In this work, Ni/ZnO:Al and Au/ZnO:Al structures are proposed as efficient ohmic contacts to p-GaN. Through a careful selection of deposition parameters and annealing environment, we not only achieve the formation of high-quality ohmic contacts but also gain insights into the interfacial reactions, enhancing the understanding of conventional Ni/Au contact formation on p-GaN. In particular, the notion that the presence of NiO at the interface is enough for an ohmic contact to form is challenged by showing that in fact it has to be NiO formed at the interface from metallic Ni and additional oxygen.
View Article and Find Full Text PDFThe incorporation of organic self-assembled monolayers (SAMs) in microelectronic devices requires precise spatial control over the self-assembly process. In this work, selective deposition of N-heterocyclic carbenes (NHCs) on specific electrodes within a two-microelectrode array is achieved by using pulsed electrodeposition. Spectroscopic analysis of the NHC-coated electrode arrays reveals that each electrode is selectively coated with a designated NHC.
View Article and Find Full Text PDFIn this work, we continued our systematic investigations on synthesis, structural studies, and electrochemical behavior of Ni-rich materials Li[NiCoMn]O (x + y + z = 1; x ≥ 0.8) for advanced lithium-ion batteries (LIBs). We focused, herein, on LiNiCoMnO (NCM85) and demonstrated that doping this material with high-charge cation Mo (1 at.
View Article and Find Full Text PDFDoping LiNiCoMnO (NCM523) cathode material by small amount of Mo ions, around 1 mol %, affects pronouncedly its structure, surface properties, and electronic and electrochemical behavior. Cathodes comprising Mo-doped NCM523 exhibited in Li cells higher specific capacities, higher rate capabilities, lower capacity fading, and lower charge-transfer resistance that relates to a more stable electrode/solution interface due to doping. This, in turn, is ascribed to the fact that the Mo ions tend to concentrate more at the surface, as a result of a synthesis that always includes a necessary calcination, high-temperature stage.
View Article and Find Full Text PDFPurpose: To compare diagnostic efficacy of multigated acquisition (MUGA) scan and Tc-99m MIBI gated SPECT for evaluation and forecast of anthracycline-induced cardiotoxicity.
Material And Methods: We included into this study 80 patients (72 women and 8 men, mean age 43 ± 4.2 years) with malignant tumors without overt pathology of the cardiovascular system.
We followed the collective atomic-scale motion of Na atoms on a vicinal Cu(115) surface within a time scale of pico- to nanoseconds using helium spin echo spectroscopy. The well-defined stepped structure of Cu(115) allows us to study the effect that atomic steps have on the adsorption properties, the rate for motion parallel and perpendicular to the step edge, and the interaction between the Na atoms. With the support of a molecular dynamics simulation we show that the Na atoms perform strongly anisotropic 1D hopping motion parallel to the step edges.
View Article and Find Full Text PDFWe have investigated ethene and oxygen co-adsorption on Cu(410) by high resolution electron energy loss spectroscopy. We find that these two species compete for the adsorption sites and that pre-exposure to oxygen affects ethene adsorption more or less strongly depending on oxygen coverage and the kind of occupied sites. The c(2 × 2) O overlayer is inert with respect to ethene adsorption, while when some oxygen is removed by thermally induced subsurface incorporation, ethene chemisorption is restored.
View Article and Find Full Text PDFWe present helium scattering measurements of a water ad-layer grown on a O(2 × 1)/Ru(0001) surface. The adsorbed water layer results in a well ordered helium diffraction pattern with systematic extinctions of diffraction spots due to glide line symmetries. The data reflects a well-defined surface structure that maintains proton order even at surprisingly high temperatures of 140 K.
View Article and Find Full Text PDFThe fundamental understanding of adsorption and self-organization of biological molecules at surfaces is of greatest importance for a huge variety of possible applications, ranging from molecular electronics to the study of biocompatible materials, hygiene, and biofouling. In spite of that, the characterization of the interactions of organic molecules of biological interest with surfaces is far from being complete. In the present paper we report on a combined microscopic (scanning tunneling microscopy (STM)) and spectroscopic (X-ray photoemission spectroscopy and high-resolution electron energy loss spectroscopy) study of glutamic acid (Glu) adsorption and self-assembly on Ag(100) at different temperature.
View Article and Find Full Text PDFLike dihydrogen, water exists as two spin isomers, ortho and para, with the nuclear magnetic moments of the hydrogen atoms either parallel or antiparallel. The ratio of the two spin isomers and their physical properties play an important role in a wide variety of research fields, ranging from astrophysics to nuclear magnetic resonance (NMR). Unlike ortho and para H(2), however, the two water isomers remain challenging to separate, and as a consequence, very little is currently known about their different physical properties.
View Article and Find Full Text PDFThe molecular vibrations of ethene adsorbed on roughened Cu(111) surfaces have been investigated with high resolution electron energy loss spectroscopy and density-functional-theory calculations. The roughness was introduced by sputtering or evaporation of copper, respectively, on the cooled surface. We found stabilization of the ethene layer compared to ethene adsorbed on pristine Cu(111).
View Article and Find Full Text PDFWe demonstrate the selective, low-temperature chemistry of ethylene on the strongly undercoordinated sites of Cu(410) by investigating its adsorption by high-resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption (TPD). After dosing ethylene at approximately 110 K, apart from the expected pi-bonded species adsorbed on terraces, di-sigma-bonded ethylene and carbon are formed at the step edges. The latter product results from the complete dehydrogenation of ethylene and blocks sites for further dissociation and/or di-sigma-adsorption.
View Article and Find Full Text PDF