Rationale: The most frequently occurring phthalate, di(2-ethylhexyl) phthalate (DEHP), causes adverse effects on glucose homeostasis and insulin sensitivity in several cell models and epidemiological studies. However, thus far, there is no information available on the molecular interaction of phthalates and one of the key regulators of the metabolism, the peroxisome proliferator-activated receptor gamma (PPARγ). Since the endogenous ligand of PPARγ, 15-deoxy-delta-12,14-prostaglandin J (15Δ-PGJ ), features structural similarity to DEHP and its main metabolites produced in human hepatic metabolism, mono(2-ethylhexyl) phthalate (MEHP) and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), we tested the hypothesis of direct interactions between PPARγ and DEHP or its transformation products.
View Article and Find Full Text PDFIn this study, a commercial uniform field drift tube ion mobility-mass spectrometer (IM-MS) was utilized to measure the gas-phase conformational populations of three well-studied proteins: ubiquitin (8566 Da), cytochrome c (12,359 Da), and myoglobin in both apo and holo forms (16,951 and 17,567 Da, respectively) in order to evaluate the use of this technology for broadscale structural proteomics applications. Proteins were electrosprayed from either acidic organic (pH ~3) or aqueous buffered (pH ~6.6) solution phase conditions, which generated a wide range of cation charge states corresponding to both extended (unfolded) and compact (folded) gas-phase conformational populations.
View Article and Find Full Text PDFWe have synthesized a homobifunctional active ester cross-linking reagent containing a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) moiety connected to a benzyl group (Bz), termed TEMPO-Bz-linker. The aim for designing this novel cross-linker was to facilitate MS analysis of cross-linked products by free radical initiated peptide sequencing (FRIPS). The TEMPO-Bz-linker was reacted with all 20 proteinogenic amino acids as well as with model peptides to gain detailed insights into its fragmentation mechanism upon collision activation.
View Article and Find Full Text PDFJ Hyg Epidemiol Microbiol Immunol
December 1971
J Hyg Epidemiol Microbiol Immunol
March 1971
Cesk Epidemiol Mikrobiol Imunol
September 1960
Cesk Epidemiol Mikrobiol Imunol
March 1957