Measurement of photosensitized luminescence of singlet oxygen has been applied to studies of singlet oxygen generation and quenching by C carotenoids (neurosporene, lycopene, rhodopin, and spirilloxanthin) with long chain of conjugated double bonds (CDB) using hexafluorobenzene as a solvent. It has been found that neurosporene, lycopene, and rhodopin are capable of the low efficient singlet oxygen generation in aerated solutions upon photoexcitation in the spectral region of their main absorption maxima. The quantum yield of this process was estimated to be (1.
View Article and Find Full Text PDFCurrently, the phenomenon of direct interspecies electron transfer (DIET) is of great interest in the technology of anaerobic digestion (AD) due to potential performance benefits. However, the conditions for the occurrence of DIET and its limits on improving AD under conditions close to real have not been studied enough. This research is concentrated on the effect of conductive carbon cloth (R3), in comparison with a dielectric fiberglass cloth (R2) and control (R1), on the AD performance in large (90 L) thermophilic reactors, fed with a mixture of simulated organic fraction of municipal solid waste and sewage sludge.
View Article and Find Full Text PDFThe chase toward endowing chemical compounds with machine-like functions mimicking those of biological molecular machineries has yielded a variety of artificial molecular motors (AMMs). Pharmaceutical applications of photoexcited monomolecular unidirectionally-rotating AMMs have been envisioned in view of their ability to permeabilize biological membranes. Nonetheless, the mechanical properties of lipid membranes render the proposed drilling activity of AMMs doubtful.
View Article and Find Full Text PDFIt is known that C carotenoids with a short chain of conjugated double bonds (CDB) (5 and 7, respectively) are universal precursors in the biosynthesis of colored carotenoids in plant cells. Previously, using mainly stationary measurements of photosensitized phosphorescence of singlet oxygen (O), we discovered that phytofluene efficiently generates O in aerated solution and therefore, can serve as a source of the UV photodynamic stress in living cells [Ashikhmin et al., Biochemistry (Moscow), 2020, 85, 773].
View Article and Find Full Text PDFAt the section "Fundamentals of photodynamic, laser and PUVA therapy," 32 reports were presented in full-time and on-line format. Representatives of various scientific schools reported on the results of fundamental and applied research on the processes occurring at the cellular and organismal levels upon irradiation with low-intensity red light and upon the introduction of photosensitizers of various nature, followed by laser irradiation. Scientific reports proposed new photosensitizers, as well as their conjugates with biologically active molecules for fluorescent diagnostics and photodynamic therapy of oncological diseases.
View Article and Find Full Text PDFWe present here a tribute to one of the foremost biophysicists of our time, Vladimir Anatolievich Shuvalov, who made important contributions in bioenergetics, especially on the primary steps of conversion of light energy into charge-separated states in both anoxygenic and oxygenic photosynthesis. For this, he and his research team exploited pico- and femtosecond transient absorption spectroscopy, photodichroism & circular dichroism spectroscopy, light-induced FTIR (Fourier-transform infrared) spectroscopy, and hole-burning spectroscopy. We remember him for his outstanding leadership and for being a wonderful mentor to many scientists in this area.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) represents a powerful avenue for anticancer treatment. PDT relies on the use of photosensitizers-compounds accumulating in the tumor and converted from benign to cytotoxic upon targeted photoactivation. We here describe (3,4)-14-Ethyl-9-(hydroxymethyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoic acid (ETPA) as a major metabolite of the North Pacific brittle stars .
View Article and Find Full Text PDFPopulation of the chemically active singlet (0) state of molecular oxygen occurring due to direct laser excitation of the (1)←-(0) transition has been observed for the first time, to the best of our knowledge, in oxygen molecules dissolved in organic solvents saturated with air under natural conditions (room temperature and normal atmospheric pressure). The data were obtained in 1 cm spectrophotometric cells due to the application of a set of high-power IR fiber and diode lasers. The rate of laser generation of the singlet ((0)) states in oxygen molecules was monitored by a chemical trapping method.
View Article and Find Full Text PDFPhytoene and phytofluene - uncolored C carotenoids with short chain of conjugated double bonds (3 and 5, respectively) - are known to be universal precursors in biosynthesis of colored carotenoids in photosynthesizing organisms. It is commonly recognized that C carotenoids are photoprotectors of cells and tissues. We have shown that phytofluene is an exception to this rule.
View Article and Find Full Text PDFSolvents lacking hydrogen atoms are very convenient models for elucidating the properties of singlet oxygen, since the lifetime of singlet oxygen in these solvents reaches tens milliseconds. Measuring intrinsic infrared (IR) phosphorescence of singlet oxygen at 1270 nm is the most reliable method of singlet oxygen detection. However, efficient application of the phosphorescence method to these models requires an equipment allowing reliable measurement of the phosphorescence kinetic parameters in the millisecond time range at low rates of singlet oxygen generation, which is a technically difficult problem.
View Article and Find Full Text PDFComposting in closed polyethylene sleeves with forced aeration may minimize odor emissions, vectors attraction and leachates associated with open windrows. The present study demonstrates the use of this system for composting olive mill wastewater (OMW), the undesired stream associated with the olive milling industry. A polyethylene sleeve of 1.
View Article and Find Full Text PDFNavasard Vaganovich Karapetyan (September 6, 1936-March 6, 2015) began his scientific career at the Bach Institute of Biochemistry of the Russian Academy of Sciences, Moscow, and was associated with this institute for over 56 years. He worked in the area of biochemistry and biophysics of photosynthesis and was especially known for his studies on chlorophyll a fluorescence in higher plants and cyanobacteria, molecular organization of Photosystem I, photoprotective energy dissipation, and dynamics of energy migration in the two photosystems. We present here a brief biography and comments on the work of Navasard Karapetyan.
View Article and Find Full Text PDFBiochim Biophys Acta
June 2016
Phosphorescence measurements at 77 K and light-induced FTIR difference spectroscopy at 95 K were applied to study of the triplet state of chlorophyll a ((3)Chl) in photosystem II (PSII) core complexes isolated from spinach. Using both methods, (3)Chl was observed in the core preparations with doubly reduced primary quinone acceptor QA. The spectral parameters of Chl phosphorescence resemble those in the isolated PSII reaction centers (RCs).
View Article and Find Full Text PDFPhosphorescence characterized by the main emission band at 952 ± 1 nm (1.30 eV), the lifetime of 1.5 ± 0.
View Article and Find Full Text PDFGeneration of singlet oxygen upon excitation of oxygen molecules by infrared diode lasers has been studied in organic media (carbon tetrachloride and acetone) saturated by air under normal pressure and temperature. A new approach to analysis of the experimental data has been developed taking into account a degree of overlapping of the spectral bands of oxygen and laser radiation. Optical density, molar absorption coefficient and the cross section of light absorption were determined for the main absorption maxima of O2 at 765 and 1273 nm.
View Article and Find Full Text PDFSpectral and kinetic parameters and quantum yield of IR phosphorescence accompanying radiative deactivation of the chlorophyll a (Chl a) triplet state were compared in pigment solutions, greening and mature plant leaves, isolated chloroplasts, and thalluses of macrophytic marine algae. On the early stages of greening just after the Shibata shift, phosphorescence is determined by the bulk Chl a molecules. According to phosphorescence measurement, the quantum yield of triplet state formation is not less than 25%.
View Article and Find Full Text PDFIt is shown that the weak IR absorption bands corresponding to the forbidden triplet-singlet transitions in oxygen molecules can be reliably studied in air-saturated solvents under ambient conditions using measurements of the photooxygenation rates of singlet oxygen traps (1,3-diphenylisobenzofuran or uric acid) upon direct excitation of oxygen molecules by IR diode lasers. The best results were obtained from comparison of the oxygenation rates upon direct and photosensitized singlet oxygen excitation. In the present paper, this method was applied to estimation of the absorbance (A(ox)) and molar absorption coefficients (ε(ox)) corresponding to the oxygen absorption bands at 765 and 1273 nm in carbon tetrachloride, acetone, alcohols and water.
View Article and Find Full Text PDFChlorophyll d (Chl d) is the major pigment in both photosystems (PSI and II) of the cyanobacterium Acaryochloris marina, whose pigment composition represents an interesting alternative in oxygenic photosynthesis. While abundant information is available relative to photophysical properties of Chl a , the understanding of Chl d photophysics is still incomplete. In this paper, we present for the first time a characterization of Chl d phosphorescence, which accompanies radiative deactivation of the photoexcited triplet state of this pigment.
View Article and Find Full Text PDFThe photophysical and photosensitizing properties of two octacationic oxotitanium phthalocyanines (TiOPcs), bearing pyridiniomethyl or cholinyl substituents, have been studied in aqueous and alcohol solutions. In water, both compounds were monomeric with the high quantum yields of fluorescence (Phi(F) = 0.17-0.
View Article and Find Full Text PDFBiochemistry (Mosc)
October 2007
This review starts from a brief historical account devoted to the principles of the Bach-Engler peroxidation theory and experiments and ideas which led A. N. Bach to its creation.
View Article and Find Full Text PDFThis paper covers major events of the early history of chlorophyll research in the Russian Empire and the Soviet Union from 1771 until 1952, when the modern period of studies on photosynthesis began in full swing. Short biographical sketches of key scientists, reviews of their major research contributions and some selected photographs are included.
View Article and Find Full Text PDFCompost was tested as a medium for organic container-grown crops. Nitrogen (N) loss during composting of separated cow manure (SCM) was minimized using high C/N (wheat straw, WS; grape marc, GM) or a slightly acidic (orange peels, OP) additives. N conservation values in the resultant composts were 82%, 95% and 98% for GM-SCM, OP-SCM and WS-SCM, respectively.
View Article and Find Full Text PDFBiochemistry (Mosc)
September 2003
With the goal of mimicking the mechanisms of the biological effects of low energy laser irradiation, we have shown that infrared low intensity laser radiation causes oxygenation of the chemical traps of singlet oxygen dissolved in organic media and water saturated by air at normal atmospheric pressure. The photooxygenation rate was directly proportional to the oxygen concentration and strongly inhibited by the singlet oxygen quenchers. The maximum of the photooxygenation action spectrum coincided with the maximum of the oxygen absorption band at 1270 nm.
View Article and Find Full Text PDFTo elucidate the biochemical roles of singlet molecular oxygen (1(O2)) in the light-dependent reactions photosensitized by biological blue-light photoreceptors, time-resolved measurements of photosensitized 1O2 phosphorescence (1270 nm) were performed in air-saturated aqueous ((D2)O) solutions of pterins (2-amino-4-hydroxy-6,7-dimethylpteridine (DMP) and 2-amino-4-hydroxy-6-tetrahydroxybutyl-(D-arabo)pteridine (TOP)) and flavins (riboflavin and flavin mononucleotide (FMN)) under excitation with nitrogen laser (337.1 nm) pulses. The 1(O2) quantum yields were found to be 0.
View Article and Find Full Text PDF