Publications by authors named "Krasnogor N"

Photolithography is the foundational process at the root of micro-electromechanical (MEMS) and microfluidic systems manufacture. The process is descendant from the semiconductor industry, originating from printed circuit board and microprocessor fabrication, itself historically performed in a cleanroom environment utilizing expensive, specialist microfabrication equipment. Consequently, these conditions prove cost-prohibitive and pose a large barrier to entry.

View Article and Find Full Text PDF

Designs for scaffolded DNA origami nanostructures are commonly and minimally published as the list of DNA staple and scaffold sequences required. In nearly all cases, high-level editable design files (e.g.

View Article and Find Full Text PDF

Quadratic programming with equality constraint (QPEC) problems have extensive applicability in many industries as a versatile nonlinear programming modeling tool. However, noise interference is inevitable when solving QPEC problems in complex environments, so research on noise interference suppression or elimination methods is of great interest. This article proposes a modified noise-immune fuzzy neural network (MNIFNN) model and use it to solve QPEC problems.

View Article and Find Full Text PDF

Binary light-up aptamers are intriguing and emerging tools with potential in different fields. Herein, we demonstrate the versatility of a split Broccoli aptamer system able to turn on the fluorescence signal only in the presence of a complementary sequence. First, an RNA three-way junction harbouring the split system is assembled in an -based cell-free TX-TL system where the folding of the functional aptamer is demonstrated.

View Article and Find Full Text PDF

The formalization of biological systems using computational modelling approaches as an alternative to mathematical-based methods has recently received much interest because computational models provide a deeper mechanistic understanding of biological systems. In particular, formal verification, complementary approach to standard computational techniques such as simulation, is used to validate the system correctness and obtain critical information about system behaviour. In this study, we survey the most frequently used computational modelling approaches and formal verification techniques for computational biology.

View Article and Find Full Text PDF

Background: The application of artificial intelligence (AI) to whole slide images has the potential to improve research reliability and ultimately diagnostic efficiency and service capacity. Image annotation plays a key role in AI and digital pathology. However, the work-streams required for tissue-specific (skin) and immunostain-specific annotation has not been extensively studied compared with the development of AI algorithms.

View Article and Find Full Text PDF

Computational tools have been widely adopted for strain optimization in metabolic engineering, contributing to numerous success stories of producing industrially relevant biochemicals. However, most of these tools focus on single metabolic intervention strategies (either gene/reaction knockout or amplification alone) and rely on hypothetical optimality principles (e.g.

View Article and Find Full Text PDF

"Full-stack" biotechnology platforms for cell line (re)programming are on the horizon, thanks mostly to (a) advances in gene synthesis and editing techniques as well as (b) the growing integration of life science research with informatics, the internet of things and automation. These emerging platforms will accelerate the production and consumption of biological products. Hence, traceability, transparency, and-ultimately-trustworthiness is required from cradle to grave for engineered cell lines and their engineering processes.

View Article and Find Full Text PDF

Partitioning proteins are well studied as molecular organizers of chromosome and plasmid segregation during division, however little is known about the roles partitioning proteins can play within type IV secretion systems. The single-stranded DNA (ssDNA)-secreting gonococcal T4SS has two partitioning proteins, ParA and ParB. These proteins work in collaboration with the relaxase TraI as essential facilitators of type IV secretion.

View Article and Find Full Text PDF

Genome editing methods based on group II introns (known as targetron technology) have long been used as a gene knockout strategy in a wide range of organisms, in a fashion independent of homologous recombination. Yet, their utility as delivery systems has typically been suboptimal due to the reduced efficiency of insertion when carrying exogenous sequences. We show that this limitation can be tackled and targetrons can be adapted as a general tool in Gram-negative bacteria.

View Article and Find Full Text PDF

Cell-cell adhesion between oral bacteria plays a key role in the development of polymicrobial communities such as dental plaque. Oral streptococci such as Streptococcus gordonii and Streptococcus oralis are important early colonizers of dental plaque and bind to a wide range of different oral microorganisms, forming multispecies clumps or "coaggregates." S.

View Article and Find Full Text PDF

DNA-based memory systems are being reported with increasing frequency. However, dynamic DNA data structures able to store and recall information in an ordered way, and able to be interfaced with external nucleic acid computing circuits, have so far received little attention. Here we present an in vitro implementation of a stack data structure using DNA polymers.

View Article and Find Full Text PDF

We present the Infobiotics Workbench (IBW), a user-friendly, scalable, and integrated computational environment for the computer-aided design of synthetic biological systems. It supports an iterative workflow that begins with specification of the desired synthetic system, followed by simulation and verification of the system in high-performance environments and ending with the eventual compilation of the system specification into suitable genetic constructs. IBW integrates , , , and features into a single software suite.

View Article and Find Full Text PDF

At the onset of the 4th Industrial Revolution, the role of synthetic biology (SynBio) as a fuel for the bioeconomy requires clarification of the terms typically adopted by this growing scientific-technical field. The concept of the chassis as a defined, reusable biological frame where non-native components can be plugged in and out to create new functionalities lies at the boundary between frontline bioengineering and more traditional recombinant DNA technology. As synthetic biology leaves academic laboratories and starts penetrating industrial and environmental realms regulatory agencies demand clear definitions and descriptions of SynBio constituents, processes and products.

View Article and Find Full Text PDF

Bacterial type IV secretion systems (T4SSs) can mediate conjugation. The T4SS from Neisseria gonorrhoeae possesses the unique ability to mediate DNA secretion into the extracellular environment. The N.

View Article and Find Full Text PDF

The scaffolded origami technique is an attractive tool for engineering nucleic acid nanostructures. This paper demonstrates scaffolded RNA origami folding in which, for the first time, all components are transcribed simultaneously in a single-pot reaction. Double-stranded DNA sequences are transcribed by T7 RNA polymerase into scaffold and staple strands able to correctly fold in a high synthesis yield into the nanoribbon.

View Article and Find Full Text PDF

Motivation: Flux balance analysis (FBA) based bilevel optimization has been a great success in redesigning metabolic networks for biochemical overproduction. To date, many computational approaches have been developed to solve the resulting bilevel optimization problems. However, most of them are of limited use due to biased optimality principle, poor scalability with the size of metabolic networks, potential numeric issues or low quantity of design solutions in a single run.

View Article and Find Full Text PDF

As DNA sequencing and synthesis become cheaper and more easily accessible, the scale and complexity of biological engineering projects is set to grow. Yet, although there is an accelerating convergence between biotechnology and digital technology, a deficit in software and laboratory techniques diminishes the ability to make biotechnology more agile, reproducible, and transparent while, at the same time, limiting the security and safety of synthetic biology constructs. To partially address some of these problems, this paper presents an approach for physically linking engineered cells to their digital footprint-we called it digital twinning.

View Article and Find Full Text PDF

β-Cell dysfunction in type 2 diabetes (T2D) is associated with loss of cellular identity and mis-expression of alternative islet hormones, including glucagon. The molecular basis for these cellular changes has been attributed to dysregulation of core β-cell transcription factors, which regulate β-cell identity through activating and repressive mechanisms. The TLE1 gene lies near a T2D susceptibility locus and, recently, the glucagon repressive actions of this transcriptional coregulator have been demonstrated in vitro.

View Article and Find Full Text PDF

Context: Although diabetes affects 40% to 50% of adults with cystic fibrosis, remarkably little is known regarding the underlying mechanisms leading to impaired pancreatic β-cell insulin secretion. Efforts toward improving the functional β-cell deficit in cystic fibrosis-related diabetes (CFRD) have been hampered by an incomplete understanding of whether β-cell function is intrinsically regulated by cystic fibrosis transmembrane conductance regulator (CFTR). Definitively excluding meaningful CFTR expression in human β-cells in situ would contribute significantly to the understanding of CFRD pathogenesis.

View Article and Find Full Text PDF

Cell replacement therapy is a promising treatment for irreversible retinal cell death in diverse diseases such as Stargardt's disease, age-related macular degeneration, and retinitis pigmentosa. The final impact of all retinal dystrophies is the loss of photoreceptors; hence, there is a pressing need for research into replacement. Seminal work has shown that a simple three-dimensional culture system enables differentiation of human pluripotent stem cells to retinal organoids containing large numbers of photoreceptors developing alongside retinal neurons and Müller glia cells in a laminated structure that resembles the native retina.

View Article and Find Full Text PDF

Many oral bacteria form macroscopic clumps known as coaggregates when mixed with a different species. It is thought that these cell-cell interactions are critical for the formation of mixed-species biofilms such as dental plaque. Here, we assessed the impact of coaggregation between two key initial colonizers of dental plaque, Streptococcus gordonii and Veillonella parvula, on gene expression in each partner.

View Article and Find Full Text PDF