Sound absorption plays a crucial role in addressing noise pollution that may cause harm to both human health and wildlife. To tackle this environmental issue, the implementation of natural-based sound absorbing materials attracts considerable attention in the last few years. In this study, sound absorbing, eco-friendly composites are produced by combining a 3D natural sponge namely Luffa Cylindrica (LC) with cellulose acetate (CA) microfibrous layers that are fabricated through electrospinning.
View Article and Find Full Text PDFAdsorption stands out as a leading wastewater treatment method for ion removal or recovery. Polymeric fibers, notably electrospun ones, are gaining prominence due to their high capacity and easy recovery. Electrospinning offers a cost-effective means to produce fibers with a large surface area and high adsorption capacity.
View Article and Find Full Text PDFOngoing research is actively exploring the use of immune checkpoint inhibitors to treat solid tumors by inhibiting the PD-1/PD-L1 axis and reactivating the function of cytotoxic T effector cells. Many types of solid tumors, however, are characterized by a dense and stiff stroma and are difficult to treat. Mechanotherapeutics have formed a recent class of drugs that aim to restore biomechanical abnormalities of the tumor microenvironment, related to increased stiffness and hypo-perfusion.
View Article and Find Full Text PDF3D naturally derived composites consisting of calcium alginate hydrogels (CA) and oxidized biochar obtained from (ox-LC) were synthesized and further evaluated as adsorbents for the removal of U(VI) from aqueous media. Batch-type experiments were conducted to investigate the effect of various physicochemical parameters on the adsorption performance of materials. The maximum adsorption capacity (q) was 1.
View Article and Find Full Text PDFThe present work reports on the synthesis and characterization of iridium (Ir)-based nanohybrids with variable chemical compositions. More specifically, highly stable polyvinylpyrrolidone (PVP) nanohybrids of the PVP-IrO and PVP-Ir/IrO types, as well as non-coated Ir/IrO nanoparticles, are synthesized using different synthetic protocols and characterized in terms of their chemical composition and morphology via X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM), respectively. Furthermore, their nonlinear optical (NLO) response and optical limiting (OL) efficiency are studied by means of the Z-scan technique, employing 4 ns laser pulses at 532 and 1064 nm.
View Article and Find Full Text PDFFunctionalized electrospun polymer microfibrous membranes were fabricated by electrospinning and further surface-functionalized with magnetic iron oxide (FeO) nanoparticles to yield magnetoactive nanocomposite fibrous adsorbents. The latter were characterized in respect to their morphology, mechanical properties and magnetic properties while they were further evaluated as substrates for removing Ofloxacin (OFL) from synthetic aqueous media and secondary urban wastewater (UWW) under varying physicochemical parameters, including the concentration of the pharmaceutical pollutant, the solution pH and the membranes' magnetic content. The magnetic-functionalized fibrous adsorbents demonstrated significantly enhanced adsorption efficacy in comparison to their non-functionalized fibrous analogues while their magnetic properties enabled their magnetic recovery and regeneration.
View Article and Find Full Text PDFThe development of functional nanomaterials exhibiting cost-effectiveness, biocompatibility and biodegradability in the form of nanoadditives, nanofertilizers, nanosensors, nanopesticides and herbicides, etc., has attracted considerable attention in the field of agriculture. Such nanomaterials have demonstrated the ability to increase crop production, enable the efficient and targeted delivery of agrochemicals and nutrients, enhance plant resistance to various stress factors and act as nanosensors for the detection of various pollutants, plant diseases and insufficient plant nutrition.
View Article and Find Full Text PDFControlled pulmonary drug delivery systems employing non-spherical particles as drug carriers attract considerable attention nowadays. Such anisotropic morphologies may travel deeper into the lung airways, thus enabling the efficient accumulation of therapeutic compounds at the point of interest and subsequently their sustained release. This study focuses on the fabrication of electrospun superparamagnetic polymer-based biodegradable microrods consisting of poly(l-lactide) (PLLA), polyethylene oxide (PEO) and oleic acid-coated magnetite nanoparticles (OA·FeO).
View Article and Find Full Text PDFIron oxide nanoparticles are the basic components of the most promising magnetoresponsive nanoparticle systems for medical (diagnosis and therapy) and bio-related applications. Multi-core iron oxide nanoparticles with a high magnetic moment and well-defined size, shape, and functional coating are designed to fulfill the specific requirements of various biomedical applications, such as contrast agents, heating mediators, drug targeting, or magnetic bioseparation. This review article summarizes recent results in manufacturing multi-core magnetic nanoparticle (MNP) systems emphasizing the synthesis procedures, starting from ferrofluids (with single-core MNPs) as primary materials in various assembly methods to obtain multi-core magnetic particles.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
September 2020
In the present study, the synthesis of superparamagnetic collagen-based nanocomposite hydrogels with tunable swelling, mechanical and magnetic properties is reported. The fabrication strategy involved the preparation of pristine collagen type-I hydrogels followed by their immersion in highly stable aqueous solutions containing pre-formed double-layer oleic acid-coated hydrophilic magnetite nanoparticles (OA.OA.
View Article and Find Full Text PDFThe preparation procedure of zero magnetic remanence superparamagnetic white paper by means of three-layer membrane configuration (sandwiched structure) is presented. The cellulose acetate fibrous membranes were prepared by electrospinning. The middle membrane layer was magnetically loaded by impregnation with an aqueous ferrofluid of 8 nm magnetic iron oxide nanoparticles colloidally stabilized with a double layer of oleic acid.
View Article and Find Full Text PDFFerrous core-shell nanoparticles consisting of a magnetic γ-FeO multi-nanoparticle core and an outer silica shell have been synthesized and covalently functionalized with Rhodamine B (RhB) fluorescent molecules (γ-FeO/SiO/RhB NPs). The resulting γ-FeO/SiO/RhB NPs were integrated with a renewable and naturally-abundant cellulose derivative (i.e.
View Article and Find Full Text PDFPVP/chitosan blended nanofibers have been prepared and investigated as adsorbent material for the removal of hexavalent uranium (U(VI)) from aqueous solutions. The nanofibers have been characterized prior and after U(VI) adsorption by SEM and FTIR measurements, and the effect of various parameters such as metal-ion concentration temperature and contact time on the adsorption efficiency has been investigated by batch-type experiments. The material presents increased sorption capacity (q= (167 ± 25) g kg at pH 6.
View Article and Find Full Text PDFFunctional upconverting nanoparticles (UCNPs) can offer new possibilities in fluorescent applications as they exhibit desired characteristic properties like large shift between the fluorescent emission signal and the infrared excitation wavelength, multi- and narrow-band absorption and emission in visible and near infrared - Vis/NIR, together with excellent photostability and low toxicity as opposed to semiconducting quantum dots. The upconversion luminescence emission or quenching characteristics of UCNPs can be altered upon exposure to physical or chemical environmental factors providing thus a functionality that can be utilized for sensing or imaging. Furthermore their functionalization with suitable indicator dyes or recognition elements can extend the range of luminescence response and ratiometric sensing to specific analytes.
View Article and Find Full Text PDFAdvances in the technology and processing of flexible optical materials have paved the way toward the integration of semiconductor emitters and polymers into functional light emitting fabrics. Lead halide perovskite nanocrystals appear as highly suitable optical sensitizers for such polymer fiber emitters due to their ease of fabrication, versatile solution-processing and highly efficient, tunable, and narrow emission across the visible spectrum. A beneficial byproduct of the nanocrystal incorporation into the polymer matrix is that it provides a facile and low-cost method to chemically and structurally stabilize the perovskite nanocrystals under ambient conditions.
View Article and Find Full Text PDFElectrospinning and electrospraying are two highly versatile and scalable electrohydrodynamic methods, which have attracted considerable attention during the last years towards the fabrication of polymer-based drug delivery systems. The latter may be obtained in the form of nano- or microfibers (via electrospinning) or as drug-loaded nano- and microparticles (via electrospraying). This review article begins with an introduction on the basic principles and the important influencing parameters governing the electrospinning/electrospraying processes, followed by an overview on their use for the development of nano/microfibers and nano/microparticles destined for use in pharmaceutical applications.
View Article and Find Full Text PDFCopper hydroxide acetate (CHA), one layered hydroxide compound with tunable magnetism, attracts great interest because of its potential applications in memory devices. However, ferromagnetism for CHA is only demonstrated by means of GPa pressure. Herein, a new method is reported, involving the combination of different crystallization pathways to control crystallization of amorphous CHA toward the formation of CHA/polymer composites with tunable magnetic properties and even a tunability that can be tested at room temperature.
View Article and Find Full Text PDFThe development of new synthetic approaches for the preparation of efficient 3D luminescent chemosensors for transition metal ions receives considerable attention nowadays, owing to the key role of the latter as elements in biological systems and their harmful environmental effects when present in aquatic media. In this work, we describe an easy and versatile synthetic methodology that leads to the generation of nonconjugated 3D luminescent semi-interpenetrating amphiphilic networks (semi-IPN) with structure-defined characteristics. More precisely, the synthesis involves the encapsulation of well-defined poly(9-anthrylmethyl methacrylate) (pAnMMA) (hydrophobic, luminescent) linear polymer chains within a covalent poly(2-(dimethylamino)ethyl methacrylate) (pDMAEMA) hydrophilic polymer network, derived via the 1,2--(2-iodoethoxy)ethane (BIEE)-induced crosslinking process of well-defined pDMAEMA linear chains.
View Article and Find Full Text PDFElectrospun nanocomposite fibers consisting of crosslinked polyvinylpyrrolidone (PVP) chains and gold nanoparticles (Au NPs) were fabricated, starting from highly stable PVP/Au NP colloidal solutions with different NP loadings, followed by thermal treatment. Information on the morphological characteristics of the fibers and of the embedded Au NPs was obtained by electron microscopy. Cylindrical, bead-free fibers were visualized by Scanning Electron Microscopy (SEM) while Transmission Electron Microscopy (TEM) and Energy Diffraction X-ray (EDX) analysis supported the presence of Au NPs within the fibers and gave information on their morphologies and average diameters.
View Article and Find Full Text PDFWe describe a fast and cost-effective process for the growth of carbon nanofibers (CNFs) at a temperature compatible with complementary metal oxide semiconductor technology, using highly stable polymer-Pd nanohybrid colloidal solutions of palladium catalyst nanoparticles (NPs). Two polymer-Pd nanohybrids, namely poly(lauryl methacrylate)-block-poly((2-acetoacetoxy)ethyl methacrylate)/Pd (LauMA -b-AEMA /Pd) and polyvinylpyrrolidone/Pd were prepared in organic solvents and spin-coated onto silicon substrates. Subsequently, vertically aligned CNFs were grown on these NPs by plasma enhanced chemical vapor deposition at different temperatures.
View Article and Find Full Text PDFThe fabrication of electrospun magnetoactive fibrous nanocomposite membranes based on the water-soluble and biocompatible poly(ethylene oxide) (PEO), the biocompatible and biodegradable poly(L-lactide) (PLLA) and preformed oleic acid-coated magnetite nanoparticles (OA.Fe3O4) is reported. Visualization of the membranes by electron microscopy techniques reveals the presence of continuous fibers of approximately 2 μm in diameter, with the magnetic nanoparticles being evenly distributed within the fibers, retaining at the same time their nanosized diameters (≈ 5 nm).
View Article and Find Full Text PDFPolymer-based nanomedicine is a large and fast growing field. Polymer-based systems have been extensively used as therapeutic carriers as well as bioimaging agents for example in tumour diagnosis. However, fewer polymeric systems have been able to combine both therapy and imaging in a new field that is called theranostics (theragnostics).
View Article and Find Full Text PDFThis study deals with the preparation of novel multiresponsive (magnetoresponsive, thermoresponsive and pH-responsive) nanocomposite conetworks consisting of oleic acid-coated magnetite nanoparticles (OA·Fe(3)O(4)), hydrophilic/thermoresponsive hexa(ethylene glycol) methyl ether methacrylate (HEGMA), hydrophobic/metal binding 2-(acetoacetoxy)ethyl methacrylate (AEMA), and pH-responsive/thermoresponsive N-diethylaminoethyl methacrylate (DEAEMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) moieties. Conventional free radical copolymerization was employed for the synthesis of random conetworks in the absence and presence of preformed OA·Fe(3)O(4). Further, in characterization of these materials in regards to their swelling behavior in organic and aqueous solvents, thermal/thermoresponsive properties, and composition, assessment of their magnetic characteristics disclosed tunable superparamagnetic behavior.
View Article and Find Full Text PDFThe quality of surface coating of magnetic nanoparticles destined as nanoprobes in clinical applications is of utmost significance for their colloidal stability and biocompatibility. A novel approach for the fabrication of such a coating involves the synthesis of well-defined diblock copolymers based on 2-(acetoacetoxy)ethyl methacrylate (chelating) and poly(ethylene glycol)methyl ether methacrylate (water-soluble, thermoresponsive), prepared by reversible addition-fragmentation chain transfer polymerization. Fabrication of magneto-responsive micelles was accomplished via chemical coprecipitation of Fe(III)/Fe(II) in the presence of diblock copolymers.
View Article and Find Full Text PDF