TET1/2/3 dioxygenases iteratively demethylate 5-methylcytosine, beginning with the formation of 5-hydroxymethylcytosine (5hmC). The post-mitotic brain maintains higher levels of 5hmC than most peripheral tissues, and TET1 ablation studies have underscored the critical role of TET1 in brain physiology. However, deletion of precludes the disentangling of the catalytic and non-catalytic functions of TET1.
View Article and Find Full Text PDFA key phenomenon in cancer is the establishment of a highly immunosuppressive tumour microenvironment (TME). Despite advances in immunotherapy, where the purpose is to induce tumour recognition and hence hereof tumour eradication, the majority of patients applicable for such treatment still fail to respond. It has been suggested that high immunological activity in the tumour is essential for achieving effective response to immunotherapy, which therefore have led to exploration of strategies that triggers inflammatory pathways.
View Article and Find Full Text PDFAllele-specific expression of imprinted gene clusters is governed by gametic DNA methylation at master regulators called imprinting control regions (ICRs). Non-gametic or secondary differentially methylated regions (DMRs) at promoters and exonic regions reinforce monoallelic expression but do not control an entire cluster. Here, we unveil an unconventional secondary DMR that is indispensable for tissue-specific imprinting of two previously unlinked genes, Grb10 and Ddc.
View Article and Find Full Text PDFBackground And Aims: Assessing mammalian gene function in vivo has traditionally relied on manipulation of the mouse genome in embryonic stem cells or perizygotic embryos. These approaches are time-consuming and require extensive breeding when simultaneous mutations in multiple genes is desired. The aim of this study is to introduce a rapid in vivo multiplexed editing (RIME) method and provide proof of concept of this system.
View Article and Find Full Text PDFCellular lipid metabolism plays a pivotal role in human cytomegalovirus (HCMV) infection, as increased lipogenesis in HCMV-infected cells favors the envelopment of newly synthesized viral particles. As all cells are equipped with restriction factors (RFs) able to exert a protective effect against invading pathogens, we asked whether a similar defense mechanism would also be in place to preserve the metabolic compartment from HCMV infection. Here, we show that gamma interferon (IFN-γ)-inducible protein 16 (IFI16), an RF able to block HCMV DNA synthesis, can also counteract HCMV-mediated metabolic reprogramming in infected primary human foreskin fibroblasts (HFFs), thereby limiting virion infectivity.
View Article and Find Full Text PDFActive DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxycytosine (5caC). Although these bases are known to contribute to distinct demethylation pathways, the lack of tools to uncouple these sequential oxidative events has constrained our mechanistic understanding of the role of TETs in chromatin reprogramming.
View Article and Find Full Text PDFBackground: Wastewater-based epidemiology (WBE) provides complementary information to traditional self-report methods for estimating substance use within a population. WBE was applied to estimate the consumption of alcohol in an Australian rural city (population estimated 100,000) over 6 years.
Methods: A total of 352 wastewater samples were analysed from a wastewater treatment plant located in South-East Queensland, Australia, from 2012 to 2017.
Epigenetic dysregulation of long noncoding RNA H19 was recently found to be associated with calcific aortic valve disease (CAVD) in humans by repressing NOTCH1 transcription. This finding offers a possible epigenetic explanation for the abundance of cases of CAVD that are not explained by any clear genetic mutation. In this study, we examined the effect of age and sex on epigenetic dysregulation of H19 and subsequent aortic stenosis.
View Article and Find Full Text PDFRIG-I is a cytosolic RNA sensor that recognizes short 5' triphosphate RNA, commonly generated during virus infection. Upon activation, RIG-I initiates antiviral immunity, and in some circumstances, induces cell death. Because of this dual capacity, RIG-I has emerged as a promising target for cancer immunotherapy.
View Article and Find Full Text PDFThe interferon γ-inducible protein 16 (IFI16) is known as immune sensor of retroviral DNA intermediates. We show that IFI16 restricts HIV-1 independently of immune sensing by binding and inhibiting the host transcription factor Sp1 that drives viral gene expression. This antiretroviral activity and ability to bind Sp1 require the N-terminal pyrin domain and nuclear localization of IFI16, but not the HIN domains involved in DNA binding.
View Article and Find Full Text PDFIt is well understood that the STING signalling pathway is critical for generating a robust innate immune response to pathogens. Human and mouse STING signalling pathways are not identical, however. For example, mice lack IFI16, which has been proven important for the human STING pathway.
View Article and Find Full Text PDFImatinib is an oral chemotherapeutic used primarily to treat chronic myeloid leukemia (CML) and gastrointestinal stromal tumors (GIST). The potential effects of cancer treatments on a patient's future fertility are a major concern affecting the quality of life for cancer survivors. The effects of imatinib on future fertility are unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2018
The success of mammalian development following fertilization depends on a series of transient increases in egg cytoplasmic Ca, referred to as Ca oscillations. Maintenance of these oscillations requires Ca influx across the plasma membrane, which is mediated in part by T-type, Ca3.2 channels.
View Article and Find Full Text PDFPlasmacytoid dendritic cells (pDC) are essential for immune competence. Here we show that pDC precursor differentiated from human CD34 hematopoietic stem and progenitor cells (HSPC) has low surface expression of pDC markers, and has limited induction of type I interferon (IFN) and IL-6 upon TLR7 and TLR9 agonists treatment; by contrast, cGAS or RIG-I agonists-mediated activation is not altered. Importantly, after priming with type I and II IFN, these precursor pDCs attain a phenotype and functional activity similar to that of peripheral blood-derived pDCs.
View Article and Find Full Text PDFThe transcription factor Nrf2 is a critical regulator of inflammatory responses. If and how Nrf2 also affects cytosolic nucleic acid sensing is currently unknown. Here we identify Nrf2 as an important negative regulator of STING and suggest a link between metabolic reprogramming and antiviral cytosolic DNA sensing in human cells.
View Article and Find Full Text PDFThe host restriction factor tetherin inhibits virion release from infected cells and poses a significant barrier to successful zoonotic transmission of primate lentiviruses to humans. While most simian immunodeficiency viruses (SIV), including the direct precursors of human immunodeficiency virus type 1 (HIV-1) and HIV-2, use their Nef protein to counteract tetherin in their natural hosts, they fail to antagonize the human tetherin ortholog. Pandemic HIV-1 group M and epidemic group O strains overcame this hurdle by adapting their Vpu and Nef proteins, respectively, whereas HIV-2 group A uses its envelope (Env) glycoprotein to counteract human tetherin.
View Article and Find Full Text PDFFetal exposure to endocrine disrupting chemicals (EDCs) has been associated with adverse neurobehavioral outcomes across the lifespan and can persist across multiple generations of offspring. However, the underlying mechanisms driving these changes are not well understood. We investigated the molecular perturbations associated with EDC-induced behavioral changes in first (F1) and second (F2) filial generations, using the model EDC bisphenol A (BPA).
View Article and Find Full Text PDFSensing of DNA is essential for the innate immune system to detect threats, like viruses, intracellular bacteria or cellular DNA damage. At the centre of this conserved mammalian mechanism stands the adaptor protein STING. STING is highly regulated and is part of a complex signalling network.
View Article and Find Full Text PDFNegative regulation of immune pathways is essential to achieve resolution of immune responses and to avoid excess inflammation. DNA stimulates type I IFN expression through the DNA sensor cGAS, the second messenger cGAMP, and the adaptor molecule STING Here, we report that STING degradation following activation of the pathway occurs through autophagy and is mediated by p62/SQSTM1, which is phosphorylated by TBK1 to direct ubiquitinated STING to autophagosomes. Degradation of STING was impaired in p62-deficient cells, which responded with elevated IFN production to foreign DNA and DNA pathogens.
View Article and Find Full Text PDFThe innate immune response plays a pivotal role during human cytomegalovirus (HCMV) primary infection. Indeed, HCMV infection of primary fibroblasts rapidly triggers strong induction of type I interferons (IFN-I), accompanied by proinflammatory cytokine release. Here, we show that primary human foreskin fibroblasts (HFFs) infected with a mutant HCMV TB40/E strain unable to express UL83-encoded pp65 (v65Stop) produce significantly higher IFN-β levels than HFFs infected with the wild-type TB40/E strain or the pp65 revertant (v65Rev), suggesting that the tegument protein pp65 may dampen IFN-β production.
View Article and Find Full Text PDFGuanylate binding proteins (GBPs) are an interferon (IFN)-inducible subfamily of guanosine triphosphatases (GTPases) with well-established activity against intracellular bacteria and parasites. Here we show that GBP5 potently restricts HIV-1 and other retroviruses. GBP5 is expressed in the primary target cells of HIV-1, where it impairs viral infectivity by interfering with the processing and virion incorporation of the viral envelope glycoprotein (Env).
View Article and Find Full Text PDFBackground: Known antiretroviral restriction factors are encoded by genes that are under positive selection pressure, induced during HIV-1 infection, up-regulated by interferons, and/or interact with viral proteins. To identify potential novel restriction factors, we performed genome-wide scans for human genes sharing molecular and evolutionary signatures of known restriction factors and tested the anti-HIV-1 activity of the most promising candidates.
Results: Our analyses identified 30 human genes that share characteristics of known restriction factors.
Assisted reproductive technologies (ART) have enabled millions of couples with compromised fertility to conceive children. Nevertheless, there is a growing concern regarding the safety of these procedures due to an increased incidence of imprinting disorders, premature birth, and low birth weight in ART-conceived offspring. An integral aspect of ART is the oxygen concentration used during in vitro development of mammalian embryos, which is typically either atmospheric (~20%) or reduced (5%).
View Article and Find Full Text PDF