Purpose: The goals of our study were (a) to validate a molecular expression signature (cell cycle progression [CCP] score and molecular prognostic score [mPS; combination of CCP and pathological stage {IA or IB}]) that identifies stage I lung adenocarcinoma (ADC) patients with a higher risk of cancer-specific death following curative-intent surgical resection, and (b) to determine whether mPS stratifies prognosis within stage I lung ADC histological subtypes.
Methods: Formalin-fixed, paraffin-embedded stage I lung ADC tumor samples from 1200 patients were analyzed for 31 proliferation genes by quantitative RT-PCR. Prognostic discrimination of CCP score and mPS was assessed by Cox proportional hazards regression, using 5-year lung cancer-specific mortality as the primary outcome.
Background: A prognostic test was developed to guide adjuvant chemotherapy (ACT) decisions in early-stage non-small cell lung cancer (NSCLC) adenocarcinomas. The objective of this study was to compare the cost-utility of the prognostic test to the current standard of care (SoC) in patients with early-stage NSCLC.
Materials And Methods: Lifetime costs (2014 U.
Bioorg Med Chem Lett
November 2015
Various types of Hsp90 inhibitors have been and continue to undergo clinical investigation. One development candidate is the purine-based, synthetic Hsp90 inhibitor 1 (MPC-3100), which successfully completed a phase I clinical study. However, further clinical development of 1 was hindered by poor solubility and consequent formulation issues and promoted development of a more water soluble prodrug.
View Article and Find Full Text PDFMps1, also known as TTK, is a mitotic checkpoint protein kinase that has become a promising new target of cancer research. In an effort to improve the lead-likeness of our recent Mps1 purine lead compounds, a scaffold hopping exercise has been undertaken. Structure-based design, principles of conformational restriction, and subsequent scaffold hopping has led to novel pyrrolopyrimidine and quinazoline Mps1 inhibitors.
View Article and Find Full Text PDFModulation of Hsp90 (heat shock protein 90) function has been recognized as an attractive approach for cancer treatment, since many cancer cells depend on Hsp90 to maintain cellular homeostasis. This has spurred the search for small-molecule Hsp90 inhibitors. Here we describe our lead optimization studies centered on the purine-based Hsp90 inhibitor 28a containing a piperidine moiety at the purine N9 position.
View Article and Find Full Text PDFEfforts to optimize biological activity, novelty, selectivity and oral bioavailability of Mps1 inhibitors, from a purine based lead MPI-0479605, are described in this Letter. Mps1 biochemical activity and cytotoxicity in HCT-116 cell line were improved. On-target activity confirmation via mechanism based G2/M escape assay was demonstrated.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2008
Efforts towards developing orally bioavailable HIV-1 maturation inhibitors starting from betulinic acid 1 are described. SAR resulted in improved potency, physicochemical properties, and enhanced oral absorption in rats.
View Article and Find Full Text PDFThe structure-based design, synthesis, and anticancer activity of novel inhibitors of protein kinase CK2 are described. Using pyrazolo[1,5-a][1,3,5]triazine as the core scaffold, a structure-guided series of modifications provided pM inhibitors with microM-level cytotoxic activity in cell-based assays with prostate and colon cancer cell lines.
View Article and Find Full Text PDFFatty acid biosynthesis is essential for bacterial survival. Components of this biosynthetic pathway have been identified as attractive targets for the development of new antibacterial agents. FabH, beta-ketoacyl-ACP synthase III, is a particularly attractive target, since it is central to the initiation of fatty acid biosynthesis and is highly conserved among Gram-positive and -negative bacteria.
View Article and Find Full Text PDFThe structure-based design, synthesis, and biological activity of novel inhibitors of S-adenosyl homocysteine/methylthioadenosine (SAH/MTA) nucleosidase are described. Using 6-substituted purine and deaza purines as the core scaffolds, a systematic and structure guided series of modifications provided low nM inhibitors with broad-spectrum antimicrobial activity.
View Article and Find Full Text PDFThe structure-based design, synthesis, and biological activity of a novel indazole-containing inhibitor series for S-adenosyl homocysteine/methylthioadenosine (SAH/MTA) nucleosidase are described. Use of 5-aminoindazole as the core scaffold provided a structure-guided series of low nanomolar inhibitors with broad-spectrum antimicrobial activity. The implementation of structure-based methodologies provided a 6000-fold increase in potency over a short timeline (several months) and an economy of synthesized compounds.
View Article and Find Full Text PDF