Publications by authors named "Krafte D"

Two coding variants of apolipoprotein L1 (APOL1), called G1 and G2, explain much of the excess risk of kidney disease in African Americans. While various cytotoxic phenotypes have been reported in experimental models, the proximal mechanism by which G1 and G2 cause kidney disease is poorly understood. Here, we leveraged 3 experimental models and a recently reported small molecule blocker of APOL1 protein, VX-147, to identify the upstream mechanism of G1-induced cytotoxicity.

View Article and Find Full Text PDF

Objective: Many previous studies of drug repurposing have relied on literature review followed by evaluation of a limited number of candidate compounds. Here, we demonstrate the feasibility of a more comprehensive approach using high-throughput screening to identify inhibitors of a gain-of-function mutation in the SCN8A gene associated with severe pediatric epilepsy.

Methods: We developed cellular models expressing wild-type or an R1872Q mutation in the Na 1.

View Article and Find Full Text PDF
Article Synopsis
  • Voltage-gated sodium channels (Nav) are crucial for the electrical activity in excitable cells, and the study highlights two specific small molecule inhibitors that target these channels with high selectivity for human Nav1.3/Nav1.1 and Nav1.7.* -
  • The inhibitors identified interact with a unique region of the Nav channel structure, specifically the S1-S4 voltage sensor segment of Domain 4, which is different from where other known inhibitors bind.* -
  • The research suggests that certain amino acid residues in the Nav channels determine selectivity for the inhibitors and differences in how various species respond to them, providing insights into developing new targeted treatments.*
View Article and Find Full Text PDF

Na(v)1.8 (also known as PN3) is a tetrodotoxin-resistant (TTx-r) voltage-gated sodium channel (VGSC) that is highly expressed on small diameter sensory neurons. It has been implicated in the pathophysiology of inflammatory and neuropathic pain, and we envisioned that selective blockade of Na(v)1.

View Article and Find Full Text PDF

A series of aryl-substituted nicotinamide derivatives with selective inhibitory activity against the Na(v)1.8 sodium channel is reported. Replacement of the furan nucleus and homologation of the anilide linker in subtype-selective blocker A-803467 (1) provided potent, selective derivatives with improved aqueous solubility and oral bioavailability.

View Article and Find Full Text PDF

Activation of sodium channels is essential to action potential generation and propagation. Recent genetic and pharmacological evidence indicates that activation of Na(v)1.8 channels contributes to chronic pain.

View Article and Find Full Text PDF

Background: A non-opioid receptor-mediated inhibition of sodium channels in dorsal root ganglia (DRGs) by kappa-opioid receptor agonists (kappa-ORAs) has been reported to contribute to the antinociceptive actions in animals and humans. In this study, we examined structurally diverse kappa-ORAs for their abilities to inhibit tetrodotoxin-resistant (TTX-r) sodium channels in adult rat DRGs.

Methods: Whole-cell recordings of TTX-r sodium currents were performed on cultured adult rat DRGs.

View Article and Find Full Text PDF

Sodium channels are key proteins in regulating neuronal excitability and accumulating data suggest that specific subtypes of voltage-dependent sodium channels are important in signaling various types of pain. Consistent with this theme, Jarvis et al.(7) recently reported the identification of a subtype-selective Na(v)1.

View Article and Find Full Text PDF

The synthesis and pharmacological characterization of a novel furan-based class of voltage-gated sodium channel blockers is reported. Compounds were evaluated for their ability to block the tetrodotoxin-resistant sodium channel Na(v)1.8 (PN3) as well as the Na(v)1.

View Article and Find Full Text PDF

Nav1.8 (also known as PN3) is a tetrodotoxin-resistant (TTx-r) voltage-gated sodium channel (VGSC) that is highly expressed on small diameter sensory neurons and has been implicated in the pathophysiology of inflammatory and neuropathic pain. Recent studies using an Nav1.

View Article and Find Full Text PDF

Recent scientific advances have enhanced our understanding of the role voltage-gated sodium channels play in pain sensation. Human data on Nav1.7 show that gain-of-function mutations lead to enhanced pain while loss-of-function mutations lead to Congenital Indifference to Pain.

View Article and Find Full Text PDF

Activation of tetrodotoxin-resistant sodium channels contributes to action potential electrogenesis in neurons. Antisense oligonucleotide studies directed against Na(v)1.8 have shown that this channel contributes to experimental inflammatory and neuropathic pain.

View Article and Find Full Text PDF

Antisense (AS) oligodeoxynucleotides (ODNs) targeting the Nav 1.8 sodium channel have been reported to decrease inflammatory hyperalgesia and L5/L6 spinal nerve ligation-induced mechanical allodynia in rats. The present studies were conducted to further characterize Nav 1.

View Article and Find Full Text PDF

The Elk subfamily of the Eag K+ channel gene family is represented in mammals by three genes that are highly conserved between humans and rodents. Here we report the distribution and functional properties of a member of the human Elk K+ channel gene family, KCNH8. Quantitative RT-PCR analysis of mRNA expression patterns showed that KCNH8, along with the other Elk family genes, KCNH3 and KCNH4, are primarily expressed in the human nervous system.

View Article and Find Full Text PDF

Previously, we showed that arachidonic acid (AA) potentiates currents flowing through a cloned human inwardly rectifying K(+) channel, hKir2.3. The mechanism by which this potentiation occurs is not understood.

View Article and Find Full Text PDF

We studied the effect of a novel anti-inflammatory agent, tenidap, on a cloned inwardly rectifying K+ channel, hKir2.3. Tenidap (a) potently potentiated 86Rb+ efflux through hKir2.

View Article and Find Full Text PDF

Arachidonic acid (AA) is an important constituent of membrane phospholipids and can be liberated by activation of cellular phospholipases. AA modulates a variety of ion channels via diverse mechanisms, including both direct effects by AA itself and indirect actions through AA metabolites. Here, we report excitatory effects of AA on a cloned human inwardly rectifying K(+) channel, Kir2.

View Article and Find Full Text PDF

Eighteen synthetic analogs of ShK toxin, a thirty-five residue K channel blocker derived from the sea anemone Stichodactyla helianthus, were prepared in order to identify functionally important residues. CD spectra of sixteen of the analogs were virtually identical with the spectrum of wild-type toxin, indicating that the conformations were not affected by the substitutions. A conserved residue, Lys22, is essential for ShK binding to rat brain K channels which are primarily of the Kv1.

View Article and Find Full Text PDF

ShK-toxin, a 35 residue peptide isolated from the sea anemone Stichodactyla helianthus, was synthesized using an Fmoc strategy and successfully folded to the biologically active form containing three intramolecular disulfide bonds. The ability of synthetic ShK toxin to inhibit specific [125I]-dendrotoxin I binding to rat brain membranes slightly exceeded (was more potent than) that of the natural ShK toxin sample, but was comparable with previously reported data for ShK toxin. The peptide toxin inhibited [125I]-charybdotoxin binding to Jurkat T lymphocytes with an IC50 value of 32 pM.

View Article and Find Full Text PDF

Purine-based analogs of SDZ 211-500 (5) were prepared and evaluated as inactivation modifiers of guinea pig or human cardiac sodium (Na) channels expressed in Xenopus oocytes. Substances which remove or slow the Na channel inactivation process in cardiac tissue are anticipated to prolong the effective refractory period and increase inotropy and thus have potential utility as antiarrhythmic agents. Heterocyclic substitution at the 6-position of the purine ring resulted in compounds with increased Na activity and potency, with 5-membered heterocycles being optimal.

View Article and Find Full Text PDF

AMPA receptors may play an important role in acute and chronic neurodegenerative diseases. An assay for the specific binding of [3H]-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) to receptors in membranes from post-mortem human brain is described, which can be used in screening for selective AMPA receptor antagonists. Membranes were prepared from frozen human adult hippocampus and whole fetal brain tissues.

View Article and Find Full Text PDF

The in vitro biological characterization of a series of 4-(alkylamino)-1,4-dihydroquinolines is reported. These compounds are novel inhibitors of voltage-activated n-type potassium ion (K+) channels in human T lymphocytes. This series, identified from random screening, was found to inhibit [125I]charybdotoxin binding to n-type K+ channels with IC50 values ranging from 10(-6) to 10(-8) M.

View Article and Find Full Text PDF