Purpose: Carbon ion therapy treatments can be monitored non-invasively with in-beam Positron Emission Tomography (PET). At CNAO the INSIDE in-beam PET scanner has been used in a clinical trial (NCT03662373) to monitor cancer treatments with proton and carbon therapy. In this work we present the analysis results of carbon therapy data, acquired during the first phase of the clinical trial, analyzing data of nine patients treated at CNAO for various malignant tumors in the head-and-neck region.
View Article and Find Full Text PDFThis study addresses a fundamental limitation of in-beam positron emission tomography (IB-PET) in proton therapy: the lack of direct anatomical representation in the images it produces. We aim to overcome this shortcoming by pioneering the application of deep learning techniques to create synthetic control CT images (sCT) from combining IB-PET and planning CT scan data.We conducted simulations involving six patients who underwent irradiation with proton beams.
View Article and Find Full Text PDFMorphological changes that may arise through a treatment course are probably one of the most significant sources of range uncertainty in proton therapy. Non-invasive treatment monitoring is useful to increase treatment quality. The INSIDE in-beam Positron Emission Tomography (PET) scanner performs range monitoring in proton and carbon therapy treatments at the National Center of Oncological Hadrontherapy (CNAO).
View Article and Find Full Text PDFPurpose: In-beam positron emission tomography (PET) is one of the modalities that can be used for in vivo noninvasive treatment monitoring in proton therapy. Although PET monitoring has been frequently applied for this purpose, there is still no straightforward method to translate the information obtained from the PET images into easy-to-interpret information for clinical personnel. The purpose of this work is to propose a statistical method for analyzing in-beam PET monitoring images that can be used to locate, quantify, and visualize regions with possible morphological changes occurring over the course of treatment.
View Article and Find Full Text PDFParticle therapy in which deep seated tumours are treated using C ions (Carbon Ions RadioTherapy or CIRT) exploits the high conformity in the dose release, the high relative biological effectiveness and low oxygen enhancement ratio of such projectiles. The advantages of CIRT are driving a rapid increase in the number of centres that are trying to implement such technique. To fully profit from the ballistic precision achievable in delivering the dose to the target volume an online range verification system would be needed, but currently missing.
View Article and Find Full Text PDFFront Psychol
November 2020
Live streaming platforms such as Twitch that facilitate participatory online communities have become an integral part of game culture. Users of these platforms are predominantly teenagers and young adults, who increasingly spend time socializing online rather than offline. This shift to online behavior can be a double-edged sword when coping with difficult periods in life such as relationship issues, the death of a loved one, or job loss.
View Article and Find Full Text PDFThe high dose conformity and healthy tissue sparing achievable in Particle Therapy when using C ions calls for safety factors in treatment planning, to prevent the tumor under-dosage related to the possible occurrence of inter-fractional morphological changes during a treatment. This limitation could be overcome by a range monitor, still missing in clinical routine, capable of providing on-line feedback. The Dose Profiler (DP) is a detector developed within the INnovative Solution for In-beam Dosimetry in hadronthErapy (INSIDE) collaboration for the monitoring of carbon ion treatments at the CNAO facility (Centro Nazionale di Adroterapia Oncologica) exploiting the detection of charged secondary fragments that escape from the patient.
View Article and Find Full Text PDFBackground: In scanned proton beam therapy systematic deviations in spot size at iso-center can occur as a result of changes in the beam-line optics. There is currently no general guideline of the spot size accuracy required clinically. In this work we quantify treatment plan robustness to systematic spot size variations as a function of spot size and spot spacing, and we suggest guidelines for tolerance levels for spot size variations.
View Article and Find Full Text PDFProtein kinase C epsilon (PKCɛ) activation in the liver is proposed to inhibit insulin action through phosphorylation of the insulin receptor. Here, however, we demonstrated that global, but not liver-specific, deletion of PKCɛ in mice protected against diet-induced glucose intolerance and insulin resistance. Furthermore, PKCɛ-dependent alterations in insulin receptor phosphorylation were not detected.
View Article and Find Full Text PDFObjective: Treatment model adherence is an important predictor of treatment outcome. In clinical practice evidence-based treatments are delivered in widely varying degrees. This study examines which Community Reinforcement Approach (CRA) procedures are delivered by addiction care therapists and how this is associated with therapist characteristics.
View Article and Find Full Text PDFBackground: Spot size σ (in air at isocenter), interspot spacing d, and spot charge q influence dose delivery efficiency and plan quality in Intensity Modulated Proton Therapy (IMPT) treatment planning. The choice and range of parameters varies among different manufacturers. The goal of this work is to demonstrate the influence of the spot parameters on dose quality and delivery in IMPT treatment plans, to show their interdependence, and to make practitioners aware of the spot parameter values for a certain facility.
View Article and Find Full Text PDFBackground: Spot charge is one parameter of pencil-beam scanning dose delivery system whose accuracy is typically high but whose required value has not been investigated. In this work we quantify the dose impact of spot charge inaccuracies on the dose distribution in patients. Knowing the effect of charge errors is relevant for conventional proton machines, as well as for new generation proton machines, where ensuring accurate charge may be challenging.
View Article and Find Full Text PDFHadron therapy allows for highly conformal dose distributions and better sparing of organs-at-risk, thanks to the characteristic dose deposition as function of depth. However, the quality of hadron therapy treatments is closely connected with the ability to predict and achieve a given beam range in the patient. Currently, uncertainties in particle range lead to the employment of safety margins, at the expense of treatment quality.
View Article and Find Full Text PDFThe production of jets associated to bottom quarks is measured for the first time in PbPb collisions at a center-of-mass energy of 2.76 TeV per nucleon pair. Jet spectra are reported in the transverse momentum (p(T)) range of 80-250 GeV/c, and within pseudorapidity |η|<2.
View Article and Find Full Text PDFResults are presented from a search for the rare decays Bs(0)→μ+ μ- and B(0)→μ+ μ- in pp collisions at sqrt[s]=7 and 8 TeV, with data samples corresponding to integrated luminosities of 5 and 20 fb(-1), respectively, collected by the CMS experiment at the LHC. An unbinned maximum-likelihood fit to the dimuon invariant mass distribution gives a branching fraction B(Bs(0)→μ+ μ-)=(3.0(-0.
View Article and Find Full Text PDFThe first observation of the associated production of a single top quark and a W boson is presented. The analysis is based on a data set corresponding to an integrated luminosity of 12.2 fb(-1) of proton-proton collisions at sqrt[s] = 8 TeV recorded by the CMS experiment at the LHC.
View Article and Find Full Text PDFSpin correlations and polarization in the top quark-antiquark system are measured using dilepton final states produced in pp collisions at the LHC at sqrt[s]=7 TeV. The data correspond to an integrated luminosity of 5.0 fb(-1) collected with the CMS detector.
View Article and Find Full Text PDFResults are presented of a search for a "natural" supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top quark (the top squark) and the Higgs boson (Higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least two b-quark jets.
View Article and Find Full Text PDFGoal: Proton treatment monitoring with Positron-Emission-Tomography (PET) is based on comparing measured and Monte Carlo (MC) predicted β(+) activity distributions. Here we present PET β(+) activity data and MC predictions both during and after proton irradiation of homogeneous PMMA targets, where protons were extracted from a cyclotron.
Methods And Materials: PMMA phantoms were irradiated with 62 MeV protons extracted from the CATANA cyclotron.
Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood.
View Article and Find Full Text PDF