Trisomy 12 is one of the most frequent chromosomal abnormalities in cultured human pluripotent stem cells (hPSCs). Although potential oncogenic properties and augmented cell cycle caused by trisomy 12 have been reported, the consequences of trisomy 12 in terms of cell differentiation, which is the basis for regenerative medicine, drug development, and developmental biology studies, have not yet been investigated. Here, we report that trisomy 12 compromises the mesendodermal differentiation of hPSCs.
View Article and Find Full Text PDFAlthough mesangial cell-glomerular basement membrane (GBM) connections play a key role in maintaining the glomerular capillary loop structure, information remains limited about how these connections are formed during glomerulogenesis. We have previously shown that weakened podocyte-GBM interactions owing to tensin 2 () deficiency lead to abnormal GBM maturation during postnatal glomerulogenesis. Here, we investigated whether abnormal GBM maturation affected mesangial cell-GBM connections and mesangial cell differentiation.
View Article and Find Full Text PDFMouse urine contains major urinary proteins (MUPs) that are not found in human urine. Therefore, even healthy mice exhibit proteinuria, unlike healthy humans, making it challenging to use mice as models for human diseases. It was also unknown whether dipsticks for urinalysis could measure protein concentrations precisely in urine containing MUPs.
View Article and Find Full Text PDFTensin2 (Tns2), an integrin-linked protein, is enriched in podocytes within the glomerulus. Previous studies have revealed that -deficient mice exhibit defects of the glomerular basement membrane (GBM) soon after birth in a strain-dependent manner. However, the mechanisms for the onset of defects caused by deficiency remains unidentified.
View Article and Find Full Text PDFTransgene insertion patterns are critical for the analysis of transgenic animals because the influence of transgenes may change depending on the insertion pattern (such as copy numbers and orientations of concatenations) and the insertion position in the genome. We previously reported a genomic walking strategy to locate transgenes in the genomes of transgenic mice (Exp. Anim.
View Article and Find Full Text PDFC1s deficiency is strongly associated with the development of human systemic lupus erythematosus (SLE); however, the mechanisms by which C1s deficiency contributes to the development of SLE have not yet been elucidated in detail. Using ICR-derived-glomerulonephritis (ICGN) mouse strain that develops SLE and very weakly expresses C1s in the liver, we investigated the protective roles of C1s against SLE. A genetic sequence analysis revealed complete deletion of the C1s1 gene, a mouse homolog of the human C1s gene, with partial deletion of the C1ra and C1rb genes in the ICGN strain.
View Article and Find Full Text PDFCaspase recruitment domain family member 14 (CARD14) was recently identified as a psoriasis-susceptibility gene, but its immunological role in the pathogenesis of psoriasis in vivo remains unclear. In this study, we examined the role of CARD14 in murine experimental models of psoriasis induced by either imiquimod (IMQ) cream or recombinant IL-23 injection. In all models tested, the psoriasiform skin inflammation was abrogated in mice.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
March 2017
Misidentification or cross-contamination of cell lines can cause serious issues. Human cell lines have been authenticated by short tandem repeat profiling; however, mouse cell lines have not been adequately assessed. In this study, mouse cell lines registered with the JCRB cell bank were examined by simple sequence length polymorphism (SSLP) analysis to identify their strains.
View Article and Find Full Text PDFGiven the difficulties inherent in maintaining human pluripotent stem cells (hPSCs) in a healthy state, hPSCs should be routinely characterized using several established standard criteria during expansion for research or therapeutic purposes. hPSC colony morphology is typically considered an important criterion, but it is not evaluated quantitatively. Thus, we designed an unbiased method to evaluate hPSC colony morphology.
View Article and Find Full Text PDFTensin2 (Tns2) is an essential component for the maintenance of glomerular basement membrane (GBM) structures. Tns2-deficient mice were previously shown to develop mild glomerular injury on a DBA/2 background, but not on a C57BL/6J or a 129/SvJ background, suggesting that glomerular injury by the deletion of Tns2 was strongly dependent on the genetic background. To further understand the mechanisms for the onset and the progression of glomerular injury by the deletion of Tns2, we generated Tns2-deficient mice on an FVB/N (FVB) strain, which is highly sensitive to glomerular disease.
View Article and Find Full Text PDFBackground: ICR-derived glomerulonephritis (ICGN) strain is a novel inbred strain of mice with a hereditary nephrotic syndrome. Deletion mutation of tensin 2 (Tns2), a focal adhesion molecule, has been suggested to be responsible for nephrotic syndrome in ICGN mice; however, the existence of other associative factors has been suggested.
Methods And Results: To identify additional associative factors and to better understand the onset mechanism of nephrotic syndrome in ICGN mice, we conducted a comprehensive gene expression analysis using DNA microarray.
Background/aims: Tenc1 (also known as tensin2) is an integrin-associated focal adhesion molecule that is broadly expressed in mouse tissues including the liver, muscle, heart and kidney. A mouse strain carrying mutated Tenc1, the ICR-derived glomerulonephritis (ICGN) strain, develops severe nephrotic syndrome.
Methods: To elucidate the function of Tenc1 in the kidney, Tenc1(ICGN) was introduced into 2 genetic backgrounds, i.
We analyzed the Hr gene of a hairless mouse strain of unknown origin (HR strain, http://animal.nibio.go.
View Article and Find Full Text PDFBackground: The self-renewal of human pluripotent stem (hPS) cells including embryonic stem and induced pluripotent stem cells have been reported to be supported by various signal pathways. Among them, fibroblast growth factor-2 (FGF-2) appears indispensable to maintain self-renewal of hPS cells. However, downstream signaling of FGF-2 has not yet been clearly understood in hPS cells.
View Article and Find Full Text PDFBackground: Although plasma β-amyloid (Aβ) has been suggested to be a noninvasive diagnostic biomarker for Alzheimer's disease (AD), its significance and validity have been inconclusive. Thus, it is quite important to establish a novel diagnostic method related to plasma Aβ.
Methods: As our previous animal studies demonstrated a relation of glucose with plasma Aβ, we examined the effect of glucose loading on plasma Aβ levels in AD patients.
Flavonoids, which are plant polyphenols, are now widely used in supplements and cosmetics. Here, we report that 4'-methylflavonoids are potent inducers of melanogenesis in B16F10 melanoma cells and in mice. We recently identified salt inducible kinase 2 (SIK2) as an inhibitor of melanogenesis via the suppression of the cAMP-response element binding protein (CREB)-specific coactivator 1 (TORC1).
View Article and Find Full Text PDFProc Jpn Acad Ser B Phys Biol Sci
April 2012
Sugar chain abnormalities in glycolipids and glycoproteins are associated with various diseases. Here, we report an adult onset cardiac dilatation in a transgenic mouse line with Galβ1,3GalNAc α2,3-sialyltransferase II (ST3Gal-II) transgenes. The transgenic hearts at the end-stage, at around 7 months old, were enlarged, with enlarged cavities and thin, low-tensile walls, typical of dilated cardiomyopathy.
View Article and Find Full Text PDFFor accurate protein quantification when using quantitative western blot analysis with chemiluminescence reagents, standard curves are needed because of the narrow quantifiable ranges. However, they are often difficult to obtain because authentic proteins are not always available. Here we present our original and convenient method using a sample mixture as a scale to create standard curves.
View Article and Find Full Text PDFDiabetes mellitus (DM) is one of the major non-genetic risk factors for Alzheimer disease (AD). However, the mechanism by which DM increases the risk of AD has not been elucidated. Here, we summarize recent findings to address this question.
View Article and Find Full Text PDFFabry disease is a lysosomal storage disorder caused by an α-galactosidase A (α-Gal A) deficiency and resulting in the accumulation of glycosphingolipids, predominantly globotriaosylceramide (Gb3). A transgenic mouse expressing the human α-Gal A R301Q mutant in an α-Gal A-knockout background (TgM/KO) should be useful for studying active-site-specific chaperone (ASSC) therapy for Fabry disease. However, the Gb3 content in the heart tissue of this mouse was too low to detect an ASSC-induced effect.
View Article and Find Full Text PDFRecent epidemiological studies suggest that diabetes mellitus is a strong risk factor for Alzheimer disease. However, the underlying mechanisms remain largely unknown. In this study, to investigate the pathophysiological interaction between these diseases, we generated animal models that reflect the pathologic conditions of both diseases.
View Article and Find Full Text PDFObese adipose tissue is markedly infiltrated by macrophages, suggesting that they may participate in the inflammatory pathways that are activated in obese adipose tissue. Evidence has suggested that saturated fatty acids released via adipocyte lipolysis serve as a naturally occurring ligand that stimulates Toll-like receptor (TLR)4 signaling, thereby inducing the inflammatory responses in macrophages in obese adipose tissue. Through a combination of cDNA microarray analyses of saturated fatty acid-stimulated macrophages in vitro and obese adipose tissue in vivo, here we identified activating transcription factor (ATF)3, a member of the ATF/cAMP response element-binding protein family of basic leucine zipper-type transcription factors, as a target gene of saturated fatty acids/TLR4 signaling in macrophages in obese adipose tissue.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2009
With the emergence of a promising approach to treat Alzheimer disease (AD) targeting the beta-amyloid (Abeta) pathway, it is necessary to establish new diagnostic biomarkers that enable the antemortem diagnosis of AD. Although plasma Abeta has been suggested as a non-invasive biomarker, its significance has been inconclusive. Thus, it is important to improve the diagnostic potential of plasma Abeta.
View Article and Find Full Text PDFWe assessed the possibility of C57BL/6-Tg (Meg1/Grb10)isn(Meg1 Tg) mice as a non-obese type 2 diabetes (2DM) animal model. Meg1 Tg mice were born normal, but their weight did not increase as much as normal after weaning and showed about 85% of normal size at 20 weeks of age. Body mass index of Meg1 Tg mice was also smaller than that of control mice.
View Article and Find Full Text PDFTo examine the molecular basis for efficient induction of superovulation in the rabbit, we determined the cDNA sequences of the luteinizing hormone beta-subunit (LHB) from Japanese White (JW), New Zealand White (NZW), and Dutch-Belted (Dutch) rabbits, and we compared these LHB sequences with those of other mammals. Using 5'- and 3'-rapid amplification of cDNA ends (RACE) with pituitary cDNA libraries, we found that the LHB cDNAs of all three breeds are the same length (523 bp from the 5'-end to the polyA site) and have putative AATAAA polyadenylation signal sequences at nucleotides 504 to 509. Northern blot analysis indicated that the approximately 600-nt mRNA encoding JW LHB is slightly longer than the LHB mRNAs of the other two breeds.
View Article and Find Full Text PDF