Cytoskeleton (Hoboken)
September 2022
Microtubule stability and dynamics regulations are essential for vital cellular processes, such as microtubule-dependent axonal transport. Dynamin is involved in many membrane fission events, such as clathrin-mediated endocytosis. The ubiquitously expressed dynamin-2 has been reported to regulate microtubule stability.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2020
Death-associated protein kinase 3 (DAPK3), a member of the DAPK family, contributes to cytokinesis by phosphorylating myosin II regulatory light chain (MRLC). Missense mutations in DAPK3, T112M, D161N, and P216S, were observed in the lung, colon, and cervical cancers, respectively, but the effects of these mutations on cytokinesis remain unclear. Here, we show that cells expressing EGFP-DAPK3-T112M, -D161N, or -P216S exhibited reduced rates of cytokinesis, with an increased ratio of multinucleated cells.
View Article and Find Full Text PDFCytokinesis of animal cells requires contraction of a contractile ring, composed of actin filaments and myosin II filaments. Phosphorylation of myosin II regulatory light chain (MRLC) promotes contraction of the actomyosin ring by activating myosin II motor activity. Both Rho-associated coiled-coil kinase (Rho kinase/ROCK) and Zipper-interacting protein kinase (ZIP kinase/ZIPK) have been reported to phosphorylate MRLC at the contractile ring.
View Article and Find Full Text PDFCytokinesis is initiated by the formation and ingression of the cleavage furrow. Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P] accumulation followed by RhoA translocation to the cleavage furrow are prerequisites for cytokinesis progression. Here, we investigated whether phospholipase C (PLC)-related catalytically inactive protein (PRIP), a metabolic modulator of PI(4,5)P, regulates PI(4,5)P-mediated cytokinesis.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
December 2015
Zipper-interacting protein kinase (ZIPK) is known to regulate several functions such as apoptosis, smooth muscle contraction, and cell migration. While exogenously expressed GFP-ZIPK localizes to the cleavage furrow, role of ZIPK in cytokinesis is obscure. Here, we show that ZIPK is a major MRLC kinase during mitosis.
View Article and Find Full Text PDFNon-muscle myosin II is stimulated by monophosphorylation of its regulatory light chain (MRLC) at Ser19 (1P-MRLC). MRLC diphosphorylation at Thr18/Ser19 (2P-MRLC) further enhances the ATPase activity of myosin II. Phosphorylated MRLCs localize to the contractile ring and regulate cytokinesis as subunits of activated myosin II.
View Article and Find Full Text PDFDuring cytokinesis in eukaryotic cells, an actomyosin-based contractile ring (CR) is assembled along the equator of the cell. Myosin II ATPase activity is stimulated by the phosphorylation of the myosin II regulatory light chain (MRLC) in vitro, and phosphorylated MRLC localizes at the CR in various types of cells. Previous studies have determined that phosphorylated MRLC plays an important role in CR furrowing.
View Article and Find Full Text PDFMyosin II is activated by the monophosphorylation of its regulatory light chain (MRLC) at Ser19 (1P-MRLC). Its ATPase activity is further enhanced by MRLC diphosphorylation at Thr18/Ser19 (2P-MRLC). As these phosphorylated MRLCs are colocalized with their heavy chains at the contractile ring in dividing cells, we believe that the phosphorylated MRLC acts as a subunit of the activated myosin II during cytokinesis.
View Article and Find Full Text PDFMyosin II ATPase activity is enhanced by the phosphorylation of MRLC (myosin II regulatory light chain) in non-muscle cells. It is well known that pMRLC (phosphorylated MRLC) co-localizes with F-actin (filamentous actin) in the CR (contractile ring) of dividing cells. Recently, we reported that HeLa cells expressing non-phosphorylatable MRLC show a delay in the speed of furrow ingression, suggesting that pMRLC plays an important role in the control of furrow ingression.
View Article and Find Full Text PDFThe large GTPase dynamin is strongly accumulated in the constricted area including midzonal microtubules of dividing cells. The proline-rich domain (PRD) of dynamin has been considered as a microtubule-binding domain. However, it remains unclear how PRD controls dynamin-microtubule interaction in mitotic cells.
View Article and Find Full Text PDFPhosphorylation of myosin II is thought to play an important role in cytokinesis. Although it is well known that phosphorylated regulatory light chain of myosin II (P-MRLC) localizes along the contractile ring, it is not clear how P-MRLC controls myosin II and F-actin in furrow ingression during cytokinesis. To elucidate roles of P-MRLC in furrow ingression, HeLa cells transfected with EGFP-tagged wild-type or each MRLC mutant were observed using a live-imaging microscope.
View Article and Find Full Text PDFMicrotubule reorganization is necessary for many cellular functions such as cell migration, cell polarity and cell division. Dynamin was originally identified as a microtubule-binding protein. Previous limited digestion experiment revealed that C-terminal 100-amino acids proline rich domain (PRD) of dynamin is responsible for microtubule binding in vitro.
View Article and Find Full Text PDFDvl, an important component of the Wnt signalling pathway, is thought to be involved in synaptogenesis. In this study, we investigated whether Dvl regulates neurotransmitter release. Knockdown of Dvl in PC12 cells suppressed K(+)-induced dopamine release, and this phenotype was restored by expression of Dvl-1.
View Article and Find Full Text PDFAdhesive cells show complex mechanical interactions with the substrate, however the exact mechanism of such interactions, termed traction forces, is still unclear. To address this question we have measured traction forces of fibroblasts treated with agents that affect the myosin II-dependent contractile mechanism. Using the potent myosin II inhibitor blebbistatin, we demonstrate that traction forces are strongly dependent on a functional myosin II heavy chain.
View Article and Find Full Text PDF