The family of heterochromatin protein 1 (HP1) isoforms is essential for chromatin packaging, regulation of gene expression, and repair of damaged DNA. Here we document that γ-radiation reduced the number of HP1α-positive foci, but not HP1β and HP1γ foci, located in the vicinity of the fibrillarin-positive region of the nucleolus. The additional analysis confirmed that γ-radiation has the ability to significantly decrease the level of HP1α in rDNA promoter and rDNA encoding 28S rRNA.
View Article and Find Full Text PDFIn this work, we shed new light on the highly debated issue of chromatin fragmentation in cryopreserved cells. Moreover, for the first time, we describe replicating cell-specific DNA damage and higher-order chromatin alterations after freezing and thawing. We identified DNA structural changes associated with the freeze-thaw process and correlated them with the viability of frozen and thawed cells.
View Article and Find Full Text PDFThe dynamics of nuclear morphology changes during apoptosis remains poorly investigated and understood. Using 3D time-lapse confocal microscopy we performed a study of early-stage apoptotic nuclear morphological changes induced by etoposide in single living HepG2 cells. These observations provide a definitive evidence that nuclear apoptotic volume decrease (AVD) is occurring simultaneously with peripheral chromatin condensation (so called "apoptotic ring").
View Article and Find Full Text PDFAnchoring of heterochromatin to the nuclear envelope appears to be an important process ensuring the spatial organization of the chromatin structure and genome function in eukaryotic nuclei. Proteins of the inner nuclear membrane (INM) mediating these interactions are able to recognize lamina-associated heterochromatin domains (termed LAD) and simultaneously bind either lamin A/C or lamin B1. One of these proteins is the lamin B receptor (LBR) that binds lamin B1 and tethers heterochromatin to the INM in embryonic and undifferentiated cells.
View Article and Find Full Text PDFBiological effects of high-LET (linear energy transfer) radiation have received increasing attention, particularly in the context of more efficient radiotherapy and space exploration. Efficient cell killing by high-LET radiation depends on the physical ability of accelerated particles to generate complex DNA damage, which is largely mediated by LET. However, the characteristics of DNA damage and repair upon exposure to different particles with similar LET parameters remain unexplored.
View Article and Find Full Text PDF53BP1 is a very well-known protein that is recruited to DNA lesions. The focal accumulation of p53 binding protein, 53BP1, is a main feature indicating the repair of spontaneous or irradiation-induced foci (IRIF). Thus, here, we addressed the question of whether mutations in the TP53 gene, which often affect the level of p53 protein, can change the recruitment of 53BP1 to γ- or UVA-irradiated chromatin.
View Article and Find Full Text PDFAlthough histone acetylation is one of the most widely studied epigenetic modifications, there is still a lack of information regarding how the acetylome is regulated during brain development and pathophysiological processes. We demonstrate that the embryonic brain (E15) is characterized by an increase in H3K9 acetylation as well as decreases in the levels of HDAC1 and HDAC3. Moreover, experimental induction of H3K9 hyperacetylation led to the overexpression of NCAM in the embryonic cortex and depletion of Sox2 in the subventricular ependyma, which mimicked the differentiation processes.
View Article and Find Full Text PDFThis review focuses on the function of heterochromatin protein HP1 in response to DNA damage. We specifically outline the regulatory mechanisms in which HP1 and its interacting partners are involved. HP1 protein subtypes (HP1α, HP1β, and HP1γ) are the main components of constitutive heterochromatin, and HP1α and HP1β in particular are responsible for heterochromatin maintenance.
View Article and Find Full Text PDFDNA repair is a complex process that prevents genomic instability. Many proteins play fundamental roles in regulating the optimal repair of DNA lesions. Proliferating cell nuclear antigen (PCNA) is a key factor that initiates recombination-associated DNA synthesis after injury.
View Article and Find Full Text PDFCellular transition to senescence is associated with extensive chromatin reorganization and changes in gene expression. Recent studies appear to imply an association of lamin B1 (LB1) reduction with chromatin rearrangement in human fibroblasts promoted to senescence, while the mechanisms and structural features of these relationships have not yet been clarified. In this work, we examined the functions of LB1 and the lamin B receptor (LBR) in human cancer cells.
View Article and Find Full Text PDFJ Histochem Cytochem
November 2016
DNA damage response (DDR) in ribosomal genes and mechanisms of DNA repair in embryonic stem cells (ESCs) are less explored nuclear events. DDR in ESCs should be unique due to their high proliferation rate, expression of pluripotency factors, and specific chromatin signature. Given short population doubling time and fast progress through G1 phase, ESCs require a sustained production of rRNA, which leads to the formation of large and prominent nucleoli.
View Article and Find Full Text PDFWe studied epigenetics, distribution pattern, kinetics, and diffusion of proteins recruited to spontaneous and γ-radiation-induced DNA lesions. We showed that PML deficiency leads to an increased number of DNA lesions, which was accompanied by changes in histone signature. In PML wt cells, we observed two mobile fractions of 53BP1 protein with distinct diffusion in spontaneous lesions.
View Article and Find Full Text PDFBackground: Tumor targeting of radiotherapy represents a great challenge. The addition of multimodal nanoparticles, such as 3 nm gadolinium-based nanoparticles (GdBNs), has been proposed as a promising strategy to amplify the effects of radiation in tumors and improve diagnostics using the same agents. This singular property named theranostic is a unique advantage of GdBNs.
View Article and Find Full Text PDFAmifostine protects normal cells from DNA damage induction by ionizing radiation or chemotherapeutics, whereas cancer cells typically remain uninfluenced. While confirming this phenomenon, we have revealed by comet assay and currently the most sensitive method of DNA double strand break (DSB) quantification (based on γH2AX/53BP1 high-resolution immunofluorescence microscopy) that amifostine treatment supports DSB repair in γ-irradiated normal NHDF fibroblasts but alters it in MCF7 carcinoma cells. These effects follow from the significantly lower activity of alkaline phosphatase measured in MCF7 cells and their supernatants as compared with NHDF fibroblasts.
View Article and Find Full Text PDFStudies on fixed samples or genome-wide analyses of nuclear processes are useful for generating snapshots of a cell population at a particular time point. However, these experimental approaches do not provide information at the single-cell level. Genome-wide studies cannot assess variability between individual cells that are cultured in vitro or originate from different pathological stages.
View Article and Find Full Text PDFWe studied the histone signature of embryonic and adult brains to strengthen existing evidence of the importance of the histone code in mouse brain development. We analyzed the levels and distribution patterns of H3K9me1, H3K9me2, H3K9me3, and HP1β in both embryonic and adult brains. Western blotting showed that during mouse brain development, the levels of H3K9me1, H3K9me2, and HP1β exhibited almost identical trends, with the highest protein levels occurring at E15 stage.
View Article and Find Full Text PDFBackground Information: The DNA damage response is a fundamental, well-regulated process that occurs in the genome to recognise DNA lesions. Here, we studied kinetics of proteins involved in DNA repair pathways and their recruitment to DNA lesions during the cell cycle. In non-irradiated and irradiated cells, we analysed the distribution pattern and spatiotemporal dynamics of γH2AX, 53BP1, BMI1, MDC1, NBS1, PCNA, coilin and BRCA1 proteins.
View Article and Find Full Text PDFWe studied the effect of ellagic acid (EA) on the morphology of nucleoli and on the pattern of major proteins of the nucleolus. After EA treatment of HeLa cells, we observed condensation of nucleoli as documented by the pattern of argyrophilic nucleolar organizer regions (AgNORs). EA also induced condensation of RPA194-positive nucleolar regions, but no morphological changes were observed in nucleolar compartments positive for UBF1/2 proteins or fibrillarin.
View Article and Find Full Text PDFThe nucleolus is a well-organized site of ribosomal gene transcription. Moreover, many DNA repair pathway proteins, including ATM, ATR kinases, MRE11, PARP1 and Ku70/80, localize to the nucleolus (Moore et al., 2011 ).
View Article and Find Full Text PDFCARM1 interacts with numerous transcription factors to mediate cellular processes, especially gene expression. This is important for the maintenance of ESC pluripotency or intervention to tumorigenesis. Here, we studied epigenomic effects of two potential CARM1 modulators: an activator (EML159) and an inhibitor (ellagic acid dihydrate, EA).
View Article and Find Full Text PDFWe examined the levels and distribution of post-translationally modified histones and protamines in human sperm. Using western blot immunoassay, immunofluorescence, mass spectrometry (MS), and FLIM-FRET approaches, we analyzed the status of histone modifications and the protamine P2. Among individual samples, we observed variability in the levels of H3K9me1, H3K9me2, H3K27me3, H3K36me3, and H3K79me1, but the level of acetylated (ac) histones H4 was relatively stable in the sperm head fractions, as demonstrated by western blot analysis.
View Article and Find Full Text PDFBackground: The repair of spontaneous and induced DNA lesions is a multistep process. Depending on the type of injury, damaged DNA is recognized by many proteins specifically involved in distinct DNA repair pathways.
Results: We analyzed the DNA-damage response after ultraviolet A (UVA) and γ irradiation of mouse embryonic fibroblasts and focused on upstream binding factor 1 (UBF1), a key protein in the regulation of ribosomal gene transcription.
Every day, genomes are affected by genotoxic factors that create multiple DNA lesions. Several DNA repair systems have evolved to counteract the deleterious effects of DNA damage. These systems include a set of DNA repair mechanisms, damage tolerance processes, and activation of cell-cycle checkpoints.
View Article and Find Full Text PDFFolia Biol (Praha)
June 2015
Myelodysplastic syndromes (MDS) represent a clinically and genetically heterogeneous group of clonal haematopoietic diseases characterized by a short survival and high rate of transformation to acute myeloid leukaemia (AML). In spite of this variability, MDS is associated with typical recurrent non-random cytogenetic defects. Chromosomal abnormalities are detected in the malignant bone-marrow cells of approximately 40-80 % of patients with primary or secondary MDS.
View Article and Find Full Text PDF