U6 snRNA (small nuclear ribonucleic acid) is a ribozyme that catalyzes pre-messenger RNA (pre-mRNA) splicing and undergoes epitranscriptomic modifications. After transcription, the 3'-end of U6 snRNA is oligo-uridylylated by the multi-domain terminal uridylyltransferase (TUTase), TUT1. The 3'- oligo-uridylylated tail of U6 snRNA is crucial for U4/U6 di-snRNP (small nuclear ribonucleoprotein) formation and pre-mRNA splicing.
View Article and Find Full Text PDFContact-dependent growth inhibition (CDI) is a bacterial competition mechanism, wherein the C-terminal toxin domain of CdiA protein (CdiA-CT) is transferred from one bacterium to another, impeding the growth of the toxin recipient. In uropathogenic Escherichia coli 536, CdiA-CT (CdiA-CTEC536) is a tRNA anticodon endonuclease that requires a cysteine biogenesis factor, CysK, for its activity. However, the mechanism underlying tRNA recognition and cleavage by CdiA-CTEC536 remains unresolved.
View Article and Find Full Text PDFMycobacterium tuberculosis transfer RNA (tRNA) terminal nucleotidyltransferase toxin, MenT3, incorporates nucleotides at the 3'-CCA end of tRNAs, blocking their aminoacylation and inhibiting protein synthesis. Here, we show that MenT3 most effectively adds CMPs to the 3'-CCA end of tRNA. The crystal structure of MenT3 in complex with CTP reveals a CTP-specific nucleotide-binding pocket.
View Article and Find Full Text PDFU6 snRNA is a catalytic RNA responsible for pre-mRNA splicing reactions and undergoes various post-transcriptional modifications during its maturation process. The 3'-oligouridylation of U6 snRNA by the terminal uridylyltransferase, TUT1, provides the Lsm-binding site in U6 snRNA for U4/U6 di-snRNP formation and this ensures pre-mRNA splicing. Here, we present the crystal structure of human TUT1 (hTUT1) complexed with U6 snRNA, representing the post-uridylation of U6 snRNA by hTUT1.
View Article and Find Full Text PDFGlycyl-tRNA synthetases (GlyRSs) have different oligomeric structures depending on the organisms. While a dimeric α2 GlyRS species is present in archaea, eukaryotes and some eubacteria, a heterotetrameric α2β2 GlyRS species is found in most eubacteria. Here, we present the crystal structure of heterotetrameric α2β2 GlyRS, consisting of the full-length α and β subunits, from Lactobacillus plantarum (LpGlyRS), gram-positive lactic bacteria.
View Article and Find Full Text PDFIn Caenorhabditis elegans, the N6-methyladenosine (m6A) modification by METT10, at the 3'-splice sites in S-adenosyl-l-methionine (SAM) synthetase (sams) precursor mRNA (pre-mRNA), inhibits sams pre-mRNA splicing, promotes alternative splicing coupled with nonsense-mediated decay of the pre-mRNAs, and thereby maintains the cellular SAM level. Here, we present structural and functional analyses of C. elegans METT10.
View Article and Find Full Text PDFPost-transcriptional modifications have critical roles in tRNA stability and function. In thermophiles, tRNAs are heavily modified to maintain their thermal stability under extreme growth temperatures. Here we identified 2'-phosphouridine (U) at position 47 of tRNAs from thermophilic archaea.
View Article and Find Full Text PDFContact-dependent growth inhibition is a mechanism of interbacterial competition mediated by delivery of the C-terminal toxin domain of CdiA protein (CdiA-CT) into neighboring bacteria. The CdiA-CT of enterohemorrhagic Escherichia coli EC869 (CdiA-CTEC869) cleaves the 3'-acceptor regions of specific tRNAs in a reaction that requires the translation factors Tu/Ts and GTP. Here, we show that CdiA-CTEC869 has an intrinsic ability to recognize a specific sequence in substrate tRNAs, and Tu:Ts complex promotes tRNA cleavage by CdiA-CTEC869.
View Article and Find Full Text PDFBacterial toxin-antitoxin modules contribute to the stress adaptation, persistence, and dormancy of bacteria for survival under environmental stresses and are involved in bacterial pathogenesis. In Salmonella Typhimurium, the Gcn5-related N-acetyltransferase toxin TacT reportedly acetylates the α-amino groups of the aminoacyl moieties of several aminoacyl-tRNAs, inhibits protein synthesis, and promotes persister formation during the infection of macrophages. Here, we show that TacT exclusively acetylates Gly-tRNAin vivo and in vitro.
View Article and Find Full Text PDFToxin-antitoxin systems in bacteria contribute to stress adaptation, dormancy, and persistence. AtaT, a type-II toxin in enterohemorrhagic E. coli, reportedly acetylates the α-amino group of the aminoacyl-moiety of initiator Met-tRNAf, thus inhibiting translation initiation.
View Article and Find Full Text PDFLet-7 is an evolutionary conserved microRNA that mediates post-transcriptional gene silencing to regulate a wide range of biological processes, including development, differentiation, and tumor suppression. Let-7 biogenesis is tightly regulated by several RNA-binding proteins, including Lin28A/B, which represses let-7 maturation. To identify new regulators of let-7, we devised a cell-based functional screen of RNA-binding proteins using a let-7 sensor luciferase reporter and identified the tRNA pseudouridine synthase, TruB1.
View Article and Find Full Text PDFEscherichia coli ItaT toxin reportedly acetylates the α-amino group of the aminoacyl-moiety of Ile-tRNAIle specifically, using acetyl-CoA as an acetyl donor, thereby inhibiting protein synthesis. The mechanism of the substrate specificity of ItaT had remained elusive. Here, we present functional and structural analyses of E.
View Article and Find Full Text PDFThe N6-methyladenosine modification at position 43 (m6A43) of U6 snRNA is catalyzed by METTL16, and is important for the 5'-splice site recognition by U6 snRNA during pre-mRNA splicing. Human METTL16 consists of the N-terminal methyltransferase domain (MTD) and the C-terminal vertebrate conserved region (VCR). While the MTD has an intrinsic property to recognize a specific sequence in the distinct structural context of RNA, the VCR functions have remained uncharacterized.
View Article and Find Full Text PDFWe have recently developed an in vitro yeast reconstituted translation system, which is capable of synthesizing long polypeptides. Utilizing the system, we examined the role of eIF5A and its hypusine modification in translating polyproline sequence within long open reading frames. We found that polyproline motif inserted at the internal position of the protein arrests translation exclusively at low Mg2+ concentrations, and peptidylpolyproline-tRNA intrinsically destabilizes 80S ribosomes.
View Article and Find Full Text PDFBCDIN3 domain containing RNA methyltransferase, BCDIN3D, monomethylates the 5'-monophosphate of cytoplasmic tRNAHis with a G-1:A73 mispair at the top of an eight-nucleotide-long acceptor helix, using S-adenosyl-l-methionine (SAM) as a methyl group donor. In humans, BCDIN3D overexpression is associated with the tumorigenic phenotype and poor prognosis in breast cancer. Here, we present the crystal structure of human BCDIN3D complexed with S-adenosyl-l-homocysteine.
View Article and Find Full Text PDFLin28-dependent oligo-uridylylation of precursor let-7 (pre-let-7) by terminal uridylyltransferase 4/7 (TUT4/7) represses let-7 expression by blocking Dicer processing, and regulates cell differentiation and proliferation. The interaction between the Lin28:pre-let-7 complex and the N-terminal Lin28-interacting module (LIM) of TUT4/7 is required for pre-let-7 oligo-uridylylation by the C-terminal catalytic module (CM) of TUT4/7. Here, we report crystallographic and biochemical analyses of the LIM of human TUT4.
View Article and Find Full Text PDFAtaT-AtaR is an enterohemorrhagic Escherichia coli toxin-antitoxin system that modulates cellular growth under stress conditions. AtaT and AtaR act as a toxin and its repressor, respectively. AtaT is a member of the GNAT family, and the dimeric AtaT acetylates the α-amino group of the aminoacyl moiety of methionyl initiator tRNA, thereby inhibiting translation initiation.
View Article and Find Full Text PDFRNA uridylylation plays a pivotal role in the biogenesis and metabolism of functional RNAs, and regulates cellular gene expression. RNA uridylylation is catalyzed by a subset of proteins from the non-canonical terminal nucleotidyltransferase family. In human, three proteins (TUT1, TUT4, and TUT7) have been shown to exhibit template-independent uridylylation activity at 3'-end of specific RNAs.
View Article and Find Full Text PDFModification of tRNA anticodons plays a critical role in ensuring accurate translation. N-acetylcytidine (acC) is present at the anticodon first position (position 34) of bacterial elongator tRNA. Herein, we identified Bacillus subtilis ylbM (renamed tmcAL) as a novel gene responsible for acC34 formation.
View Article and Find Full Text PDFBicoid interacting 3 domain containing RNA methyltransferase (BCDIN3D) is a member of the Bin3 methyltransferase family and is evolutionary conserved from worm to human. BCDIN3D is overexpressed in breast cancer, which is associated with poor prognosis of breast cancers. However, the biological functions and properties of BCDIN3D have been enigmatic.
View Article and Find Full Text PDFThe terminal uridylyltransferase, TUT1, builds or repairs the 3'-oligo-uridylylated tail of U6 snRNA. The 3'-oligo-uridylylated tail is the Lsm-binding site for U4/U6 di-snRNP formation and U6 snRNA recycling for pre-mRNA splicing. Here, we report crystallographic and biochemical analyses of human TUT1, which revealed the mechanisms for the specific uridylylation of the 3'-end of U6 snRNA by TUT1.
View Article and Find Full Text PDFSynthetic biology has great potential for future therapeutic applications including autonomous cell programming through the detection of protein signals and the production of desired outputs. Synthetic RNA devices are promising for this purpose. However, the number of available devices is limited due to the difficulty in the detection of endogenous proteins within a cell.
View Article and Find Full Text PDFHuman RNA methyltransferase BCDIN3D is overexpressed in breast cancer cells, and is related to the tumorigenic phenotype and poor prognosis of breast cancer. Here, we show that cytoplasmic tRNAHis is the primary target of BCDIN3D in human cells. Recombinant human BCDIN3D, expressed in Escherichia coli, monomethylates the 5΄-monophosphate of cytoplasmic tRNAHis efficiently in vitro.
View Article and Find Full Text PDFThe mammalian cell nucleus contains membraneless suborganelles referred to as nuclear bodies (NBs). Some NBs are formed with an architectural RNA (arcRNA) as the structural core. Here, we searched for new NBs that are built on unidentified arcRNAs by screening for ribonuclease (RNase)-sensitive NBs using 32,651 fluorescently tagged human cDNA clones.
View Article and Find Full Text PDF