Heavy Metal (HM) bioremoval by microbes is a successful, environment-friendly technique, particularly at low concentrations of HMs. Studies using algae, bacteria, and fungi reveal promising capabilities in isolation and when used in consortia. Yet, few reviews have emphasized individual and collective HM removal rates and the associated mechanisms in natural or synthetic microbiomes.
View Article and Find Full Text PDFThe era for eco-friendly polymers was ushered by the marine plastic menace and with the discovery of emerging pollutants such as micro-, nano-plastics, and plastic leachates from fossil fuel-based polymers. This review investigates algae-derived natural, carbon neutral polysaccharides and polyesters, their structure, biosynthetic mechanisms, biopolymers and biocomposites production process, followed by biodegradability of the polymers. The review proposes acceleration of research in this promising area to address the need for eco-friendly polymers and to increase the cost-effectiveness of algal biorefineries by coupling biofuel, high-value products, and biopolymer production using waste and wastewater-grown algal biomass.
View Article and Find Full Text PDF