Publications by authors named "Koya B"

Objective: The objective of this study is to examine the effects of seatback angle, seat rotation, and impact speed on occupant kinematics and injury risk in highly automated vehicles.

Methods: The study utilized the Global Human Body Models Consortium midsize male (M50-OS+B) simplified occupant model in a simplified vehicle model (SVM) to simulate frontal crashes. The M50-OS+B model was gravity-settled and belted into the driver and left rear passenger seat.

View Article and Find Full Text PDF
Article Synopsis
  • High-rate blunt impacts to the thorax can cause various injuries such as rib fractures and lung contusions, and this study aims to characterize two specific tissues, costal cartilage and hide, for better computational modeling of these impacts.
  • Ovine samples were collected and tested for tensile and compressive responses, with costal cartilage subjected to high rates of strain and simulated using LS-Dyna software to create accurate models.
  • Results showed that costal cartilage exhibited typical biological behavior with specific failure strains and was modeled as hyperelastic, while the hide was modeled with an Ogden rubber format, contributing valuable data for understanding injury mechanics.
View Article and Find Full Text PDF

Purpose: Fluoropyrimidine-related toxicity and mortality risk increases significantly in patients carrying certain genetic variants with standard dosing. We implemented genotyping at a multisite cancer center and evaluated its impact on dosing, toxicity, and hospitalization.

Methods: In this prospective observational study, patients receiving (reactive) or planning to receive (pretreatment) fluoropyrimidine-based chemotherapy were genotyped for five variants as standard practice per provider discretion.

View Article and Find Full Text PDF

The objective of the current study was to perform a preliminary validation of the Global Human Body Models Consortium (GHBMC) average male occupant models, simplified (M50-OS) and detailed (M50-O) and the 70YO aged model in Far-side impacts and compare the head kinematics against the PMHS responses published by Petit et al. (2019). The buck used to simulate the far-side impacts comprised a seat, headrest, center console plate, leg support plate, and footrest plate with rigid material properties.

View Article and Find Full Text PDF

The objective of this study was to assess the ability of finite element human body models (FEHBMs) and Anthropometric Test Device (ATD) models to estimate occupant injury risk by comparing it with field-based injury risk in far-side impacts. The study used the Global Human Body Models Consortium midsize male (M50-OS+B) and small female (F05-OS+B) simplified occupant models with a modular detailed brain, and the ES-2Re and SID-IIs ATD models in the simulated far-side crashes. A design of experiments (DOE) with a total of 252 simulations was conducted by varying lateral ΔV (10-50kph; 5kph increments), the principal direction of force (PDOF 50°, 60°, 65°, 70°, 75°, 80°, 90°), and occupant models.

View Article and Find Full Text PDF

Spinal injuries are a concern for automotive applications, requiring large parametric studies to understand spinal injury mechanisms under complex loading conditions. Finite element computational human body models (e.g.

View Article and Find Full Text PDF

While astronauts may pilot future lunar landers in a standing posture, the response of the human body under lunar launch and landing-related dynamic loading conditions is not well understood. It is important to consider the effects of active muscles under these loading conditions as muscles stabilize posture while standing. In the present study, astronaut response for a piloted lunar mission in a standing posture was simulated using an active human body model (HBM) with a closed-loop joint-angle based proportional integral derivative controller muscle activation strategy and compared with a passive HBM to understand the effects of active muscles on astronaut body kinematics and injury risk.

View Article and Find Full Text PDF

Astronauts may pilot a future lunar lander in a standing or upright/reclined seated posture. This study compared kinematics and injury risk for the upright/reclined (30°; 60°) seated vs. standing postures for lunar launch/landing using human body modeling across 30 simulations.

View Article and Find Full Text PDF

Active muscles play an important role in postural stabilization, and muscle-induced joint stiffening can alter the kinematic response of the human body, particularly that of the lower extremities, under dynamic loading conditions. There are few full-body human body finite element models with active muscles in a standing posture. Thus, the objective of this study was to develop and validate the M50-PS+Active model, an average-male simplified human body model in a standing posture with active musculature.

View Article and Find Full Text PDF

A sensitivity analysis for loading conditions and muscle deconditioning on astronaut response for spaceflight transient accelerations was carried out using a mid-size male human body model with active musculature. The model was validated in spaceflight-relevant 2.5-15 g loading magnitudes in seven volunteer tests, showing good biofidelity (CORA: 0.

View Article and Find Full Text PDF

This study compared two morphing techniques (and their serial combination) to create subject-specific finite element models of 15 astronaut vertebrae. Surface deviations of the morphed models were compared against subject geometries extracted from medical images. The optimal morphing process yielded models with minimal difference in root-mean-square (RMS) deviation (C3, 0.

View Article and Find Full Text PDF

During future lunar missions, astronauts may be required to pilot vehicles while standing, and the associated kinematic and injury response is not well understood. In this study, we used human body modeling to predict unsuited astronaut kinematics and injury risk for piloted lunar launches and landings in the standing posture. Three pulses (2-5 g; 10-150 ms rise times) were applied in 10 directions (vertical; ± 10-degree offsets) for a total of 30 simulations.

View Article and Find Full Text PDF

The pedestrian is one of the most vulnerable road users and comprises approximately 23% of the road crash-related fatalities in the world. To protect pedestrians during Car-to-Pedestrian Collisions (CPC), subsystem impact tests are used in regulations. These tests provide insight but cannot characterize the complex vehicle-pedestrian interaction.

View Article and Find Full Text PDF

Objective: This study aims to reconstruct a real-world Crash Injury Research and Engineering Network vehicle-to-pedestrian impact to supplement the determination of pedestrian kinematics and injury causation.

Methods: A case involving a 46-year-old male pedestrian with a height of 163 cm and mass of 100 kg that was impacted by a 2019 Dodge Charger Pursuit police cruiser at an approximate velocity of 20.1 m/s was reconstructed.

View Article and Find Full Text PDF

Due to the severity and frequency of cervical spine injuries, the neck injury criterion (Nij) was developed to provide a quantitative relationship between forces and moments of the upper neck with accompanied injury risk. The present study was undertaken to evaluate differences in calculated Nij for the Global Human Body Model Consortium's detailed and simplified average 50th percentile male models. The simplified model is a computationally light version of the more detailed model and therefore it is of interest to achieve similar Nij values between the two models.

View Article and Find Full Text PDF

Pedestrians are the most vulnerable road user and represent about 23% of the road traffic deaths in the world. A finite element (FE) model corresponding to a 5 percentile female pedestrian (F05-PS) was developed by morphing the Global Human Body Models Consortium (GHBMC) 50 percentile male pedestrian (M50-PS) model to the reconstructed geometry of a recruited small female subject. The material properties of the pedestrian model were assigned based on GHBMC M50-PS model.

View Article and Find Full Text PDF

The goals of this study are to compare the lumbar spine response variance between the hybrid III, test device for human occupant restraint (THOR), and global human body models consortium simplified 50th percentile (GHBMC M50-OS) finite element models and evaluate the sensitivity of lumbar spine injury metrics to multidirectional acceleration pulses for spaceflight landing conditions. The hybrid III, THOR, and GHBMC models were positioned in a baseline posture within a generic seat with side guards and a five-point restraint system. Thirteen boundary conditions, which were categorized as loading condition variables and environmental variables, were included in the parametric study using a Latin hypercube design of experiments.

View Article and Find Full Text PDF

A recent emphasis on nontraditional seating and omnidirectional impact directions has motivated the need for deformable representation of the thoracic spine (T-spine) in human body models. The goal of this study was to develop and validate a deformable T-spine for the Global Human Body Models Consortium (GHBMC) M50-O (average male occupant) human model and to demonstrate improved biofidelity. Eleven functional spinal units (FSUs) were developed with deformable vertebrae (cortical and trabecular), spinal and costovertebral ligaments, and intervertebral discs.

View Article and Find Full Text PDF

Finite element human body models (HBMs) must be certified for use within the EuroNCAP pedestrian safety assessment protocol. We demonstrate that the Global Human Body Model Consortium (GHBMC) simplified pedestrian series of HBMs meet all criteria set forth in Technical Bulletin (TB) 024 (v 1.1 Jan.

View Article and Find Full Text PDF

The use of human body models as an additional data point in the evaluation of human-machine interaction requires quantitative validation. In this study a validation of the Global Human Body Models Consortium (GHBMC) average male occupant model (M50-O v. 4.

View Article and Find Full Text PDF

A goal of the Human Research Program at National Aeronautics and Space Administration (NASA) is to analyze and mitigate the risk of occupant injury due to dynamic loads. Experimental tests of human subjects and biofidelic anthropomorphic test devices provide valuable kinematic and kinetic data related to injury risk exposure. However, these experiments are expensive and time consuming compared to computational simulations of similar impact events.

View Article and Find Full Text PDF

Objective: Computational human body models (HBMs) are nominally omnidirectional surrogates given their structural basis in human anatomy. As a result, such models are well suited for studies related to occupant safety in anticipated highly automated vehicles (HAVs). We utilize a well-validated HBM to study the head and neck kinematics in simulations of nontraditional occupant seating configurations.

View Article and Find Full Text PDF

Objective: Lower extremity injuries are the most frequent Abbreviated Injury Scale (AIS) 2 injury for drivers in frontal crashes. The objective was to reconstruct 11 real-world motor vehicle crashes (2 with AIS 2+ distal lower extremity injury and 9 without lower extremity injury) and to analyze the vehicle parameters and driver attributes that affect injury risk.

Methods: Eleven frontal crashes were reconstructed with a finite element simplified vehicle model (SVM) using a semi-automated optimization method.

View Article and Find Full Text PDF

Objective: The objective of this study is 2-fold. We used a validated human body finite element model to study the predicted chest injury (focusing on rib fracture as a function of element strain) based on varying levels of simulated precrash braking. Furthermore, we compare deterministic and probabilistic methods of rib injury prediction in the computational model.

View Article and Find Full Text PDF