Background: Physical vascular phantoms are instrumental in studying intracranial aneurysms and testing relevant imaging tools and training systems to provide improved clinical care. Current vascular phantom production methods have major limitations in capturing the biophysical and morphological characteristics of intracranial aneurysms with good fidelity and multi-modal imaging capacity. With stereolithography (SLA) 3D printing technology becoming more accessible, newer flexible and transparent printing materials with higher precision controls open the door for improving the efficiency and quality of producing anthropomorphic vascular phantoms but have rarely been explored for the application.
View Article and Find Full Text PDFIn a new therapeutic technique, called magnetic drug targeting (MDT), magnetic particles carrying therapeutic agents are directed to the target tissue by applying an external magnetic field. Meanwhile, this magnetic field also affects the blood as a biomagnetic fluid. Therefore, it is necessary to select a magnetic field with an acceptable range of influence on the blood flow.
View Article and Find Full Text PDF