A methodology for addressing the biosphere in safety assessments for solid radioactive waste disposal was developed through theme 1 of the IAEA coordinated research project on BIOsphere Modelling and ASSessment (BIOMASS) that ran from 1996 to 2001. This methodology provided guidance on how the biosphere can be addressed in safety assessments for disposal of solid radioactive waste. Since the methodology was developed, it has proven useful and has been widely referenced in assessments in a diversity of contexts encompassing both near-surface and deep geological disposal of solid radioactive waste.
View Article and Find Full Text PDFThe International Atomic Energy Agency has coordinated an international project addressing climate change and landscape development in post-closure safety assessments of solid radioactive waste disposal. The work has been supported by results of parallel on-going research that has been published in a variety of reports and peer reviewed journal articles. The project is due to be described in detail in a forthcoming IAEA report.
View Article and Find Full Text PDFDecisions on permitting, controlling and monitoring releases of radioactivity into the environment rely on a great variety of factors. Important among these is the prospective assessment of radionuclide behavior in the environment, including migration and accumulation among and within specific environmental media, and the resulting environmental and human health impacts. Models and techniques to undertake such assessments have been developed over several decades based on knowledge of the ecosystems involved, as well as monitoring of previous radionuclide releases to the environment, laboratory experiments and other related research.
View Article and Find Full Text PDFThe BIOMOSA (BIOsphere MOdels for Safety Assessment of radioactive waste disposal) project was part of the EC fifth framework research programme. The main goal of this project was to improve the scientific basis for the application of biosphere models in the framework of long-term safety studies of radioactive waste disposal facilities and to enhance the confidence in using biosphere models for performance assessments. The study focused on the development and application of a generic biosphere tool BIOGEM (BIOsphere GEneric Model) using the IAEA BIOMASS reference biosphere methodology, and the comparison between BIOGEM and five site-specific biosphere models.
View Article and Find Full Text PDFThis paper describes the development and application of site-specific biosphere models that might be used for assessment of potential exposures in the framework of performance assessment studies of nuclear waste disposals. Model development follows the Reference Biosphere Methodology that has been set up in the framework of the BIOMASS study. In this paper, the application is to real sites at five European locations for which environmental and agricultural conditions have been described and characterised.
View Article and Find Full Text PDFIn the framework of the BioMoSA project for the development of biosphere assessment models for radioactive waste disposal the Reference Biosphere Methodology developed in the IAEA programme BIOMASS was applied to five locations, situated in different European countries. Specific biosphere models were applied to assess the hypothetical contamination of a range of agricultural and environmental pathways and the dose to individuals, following contamination of well water. The results of these site-specific models developed by the different BioMoSA partners, and the individual normalised dose to the exposure groups were compared against each other.
View Article and Find Full Text PDFDisplacement method finite element theory is used to examine the structural and elastic properties of the constituent network of elastin and collagen of the alveoli that form the mammalian lung. The role of the surface tension of pulmonary surfactant of the lung is also examined using an area-dependent relationship inferred from experimental studies. The pressure-volume (PV) curves of the resulting model are found to compare favourably with measured pressure-volume curves for whole lungs filled with air (surface tension included) and saline (no surface tension effects).
View Article and Find Full Text PDF