Publications by authors named "Kovilen Sawmynaden"

Human epidermal growth factor receptor-2 (HER2) is a well-recognised biomarker associated with 25% of breast cancers. In most cases, early detection and/or treatment correlates with an increased chance of survival. This study, has identified and characterised a highly specific anti-HER2 single-domain antibody (sdAb), NM-02, as a potential theranostic tool.

View Article and Find Full Text PDF

Plexin-B1 is a receptor for the cell surface semaphorin, Sema4D. This signaling system has been implicated in a variety of human diseases, including cancer, multiple sclerosis and osteoporosis. While inhibitors of the Plexin-B1:Sema4D interaction have been previously reported, understanding their mechanism has been hindered by an incomplete structural view of Plexin-B1.

View Article and Find Full Text PDF

Programmed death-ligand 1 (PD-L1) is a key immune regulatory protein that interacts with programmed cell death protein 1 (PD-1), leading to T-cell suppression. Whilst this interaction is key in self-tolerance, cancer cells evade the immune system by overexpressing PD-L1. Inhibition of the PD-1/PD-L1 pathway with standard monoclonal antibodies has proven a highly effective cancer treatment; however, single domain antibodies (VHH) may offer numerous potential benefits.

View Article and Find Full Text PDF

Osteoporosis and multiple sclerosis are highly prevalent diseases with limited treatment options. In light of these unmet medical needs, novel therapeutic approaches are urgently sought. Previously, the activation of the transmembrane receptor Plexin-B1 by its ligand semaphorin 4D (Sema4D) has been shown to suppress bone formation and promote neuroinflammation in mice.

View Article and Find Full Text PDF

Interleukin-25 (IL-25) and group 2 innate lymphoid cells (ILC2s) defend the host against intestinal helminth infection and are associated with inappropriate allergic reactions. IL-33-activated ILC2s were previously found to augment protective tissue-specific pancreatic cancer immunity. Here, we showed that intestinal IL-25-activated ILC2s created an innate cancer-permissive microenvironment.

View Article and Find Full Text PDF

Passive immunization using monoclonal antibodies will play a vital role in the fight against COVID-19. The recent emergence of viral variants with reduced sensitivity to some current antibodies and vaccines highlights the importance of broad cross-reactivity. This study describes deep-mining of the antibody repertoires of hospitalized COVID-19 patients using phage display technology and B cell receptor (BCR) repertoire sequencing to isolate neutralizing antibodies and gain insights into the early antibody response.

View Article and Find Full Text PDF

The precise spatiotemporal control of cell proliferation is key to the morphogenesis of epithelial tissues. Epithelial cell divisions lead to tissue crowding and local changes in force distribution, which in turn suppress the rate of cell divisions. However, the molecular mechanisms underlying this mechanical feedback are largely unclear.

View Article and Find Full Text PDF

Interleukin-16 (IL-16) is reported to be a chemoattractant cytokine and modulator of T-cell activation, and has been proposed as a ligand for the co-receptor CD4. The secreted active form of IL-16 has been detected at sites of TH1-mediated inflammation, such as those seen in autoimmune diseases, ischemic reperfusion injury (IRI), and tissue transplant rejection. Neutralization of IL-16 recruitment to its receptor, using an anti-IL16 antibody, has been shown to significantly attenuate inflammation and disease pathology in IRI, as well as in some autoimmune diseases.

View Article and Find Full Text PDF

NOD2 activation by muramyl dipeptide causes a proinflammatory immune response in which the adaptor protein CARD9 works synergistically with NOD2 to drive p38 and c-Jun N-terminal kinase (JNK) signalling. To date the nature of the interaction between NOD2 and CARD9 remains undetermined. Here we show that this interaction is not mediated by the CARDs of NOD2 and CARD9 as previously suggested, but that NOD2 possesses two interaction sites for CARD9; one in the CARD-NACHT linker and one in the NACHT itself.

View Article and Find Full Text PDF

Toxosplasma gondii is the model parasite of the phylum Apicomplexa, which contains numerous obligate intracellular parasites of medical and veterinary importance, including Eimeria, Sarcocystis, Cryptosporidium, Cyclospora, and Plasmodium species. Members of this phylum actively enter host cells by a multistep process with the help of microneme protein (MIC) complexes that play important roles in motility, host cell attachment, moving junction formation, and invasion. T.

View Article and Find Full Text PDF

Toxoplasma gondii is an obligate parasite that infects most warm blood animals. Micronemal proteins actively involves in the invasion process, where TgMIC2 and TgM2AP complex plays vital roles. Complete NMR assignments for major fragment of TgM2AP were successfully obtained.

View Article and Find Full Text PDF

Toxoplasma gondii is the causative agent of toxoplasmosis. Here we present a complete set of NMR assignments for the second EGF domain from microneme protein 6 and its re-assignment in complex with the galectin-like domain from microneme protein 1.

View Article and Find Full Text PDF

Microneme protein complexes are important for invasion of host cells by Toxoplasma gondii. We report the resonance assignment of the galectin-like domain of microneme protein 1 in complexes with the second and third EGF domains from microneme protein 6.

View Article and Find Full Text PDF

Microneme protein 4 is involved in cell binding by the important parasite Toxoplasma gondii. We present here the backbone and side-chain assignments of the first two apple domains together with a new graphical aid for their assignment using NMRView.

View Article and Find Full Text PDF

The obligate intracellular parasite Toxoplasma gondii, a member of the phylum Apicomplexa that includes Plasmodium spp., is one of the most widespread parasites and the causative agent of toxoplasmosis. Adhesive complexes composed of microneme proteins (MICs) are secreted onto the parasite surface from intracellular stores and fulfil crucial roles in host-cell recognition, attachment and penetration.

View Article and Find Full Text PDF

Immediately prior to invasion Toxoplasma gondii tachyzoites release a large number of micronemal proteins (TgMICs) that participate in host cell attachment and penetration. The TgMIC4-MIC1-MIC6 complex was the first to be identified in T. gondii and has been recently shown to be critical in invasion.

View Article and Find Full Text PDF