Publications by authors named "Kovalev K"

Isomerization is a key process in many (bio)chemical systems. In microbial rhodopsins, the photoinduced isomerization of the all-trans retinal to the 13-cis isomer initiates a cascade of structural changes of the protein. The interplay between these changes and the thermal relaxation of the isomerized retinal is one of the crucial determinants for rhodopsin functionality.

View Article and Find Full Text PDF
Article Synopsis
  • Agriculture is facing challenges from climate change and resource limitations, making accurate crop production forecasts essential for various strategies.
  • This study presents a machine learning framework that predicts crop yields using climate models, historical data, and fertilizer usage, specifically for Southeast Asia by 2028.
  • Findings indicate significant declines in cropland in Indonesia, Malaysia, the Philippines, and Viet Nam, with rice production notably decreasing in Viet Nam and Thailand, while the Philippines may see a slight increase, highlighting the urgent need for action and policy adjustments.
View Article and Find Full Text PDF

Light-driven sodium pumps (NaRs) are unique ion-transporting microbial rhodopsins. The major group of NaRs is characterized by an NDQ motif and has two aspartic acid residues in the central region essential for sodium transport. Here we identify a subgroup of the NDQ rhodopsins bearing an additional glutamic acid residue in the close vicinity to the retinal Schiff base.

View Article and Find Full Text PDF

Membrane proteins are indispensable for every living organism, yet their structural organization remains underexplored. Despite the recent advancements in single-particle cryogenic electron microscopy and cryogenic electron tomography, which have significantly increased the structural coverage of membrane proteins across various kingdoms, certain scientific methods, such as time-resolved crystallography, still mostly rely on crystallization techniques, such as lipidic cubic phase (LCP) or crystallization. In this study, we present an open-access blueprint for a humidity control chamber designed for LCP/ crystallization experiments using a Gryphon crystallization robot.

View Article and Find Full Text PDF

Proton transport is indispensable for cell life. It is believed that molecular mechanisms of proton movement through different types of proton-conducting molecules have general universal features. However, elucidation of such mechanisms is a challenge.

View Article and Find Full Text PDF

Ion gradients are a universal form of energy, information storage and conversion in living cells. Advances in optogenetics inspire the development of novel tools towards control of different cellular processes with light. Rhodopsins are perspective tools for optogenetic manipulation of ion gradients in cells and subcellular compartments, controlling pH of the cytosol and intracellular organelles.

View Article and Find Full Text PDF

Microbial rhodopsins are found more than once in a single genome (paralogs) often have different functions. We screened a large dataset of open ocean single-amplified genomes (SAGs) for co-occurrences of multiple rhodopsin genes. Many such cases were found among Pelagibacterales (SAR11), HIMB59, and the Gammaproteobacteria SAGs.

View Article and Find Full Text PDF

Proteorhodopsins (PRs), bacterial light-driven outward proton pumps comprise the first discovered and largest family of rhodopsins, they play a significant role in life on the Earth. A big remaining mystery was that up-to-date there was no described bacterial rhodopsins pumping protons at acidic pH despite the fact that bacteria live in different pH environment. Here we describe conceptually new bacterial rhodopsins which are operating as outward proton pumps at acidic pH.

View Article and Find Full Text PDF
Article Synopsis
  • Destabilase is an enzyme from the medical leech that can break down bacterial cell walls and dissolve blood clots.
  • It is affected by sodium chloride, which stops its ability to work, but the reason for this wasn't clear until now.
  • Researchers discovered the structure of destabilase and think that a different part of the enzyme helps it break down blood clots instead of what was thought before; this could help design new medicines.
View Article and Find Full Text PDF
Article Synopsis
  • Ferredoxins are small proteins that help with important processes in living things, but a specific type called 3Fe-4S ferredoxins hasn't been studied much because they need special conditions to exist.
  • Scientists figured out the structure of two types of these ferredoxins, showing how they work with another protein called CYP143.
  • The study found that when FdxE connects to CYP143, it changes its shape a bit, which helps in making different kinds of important chemicals.
View Article and Find Full Text PDF

New antitubercular drugs are vital due to the spread of resistant strains. Carbethoxyhexyl imidazole (CHImi) inhibits cytochrome P450 CYP124, which is a steroid-metabolizing enzyme that is important for the survival of Mycobacterium tuberculosis in macrophages. The available crystal structure of the CYP124-CHImi complex reveals two glycerol molecules in the active site.

View Article and Find Full Text PDF

Numerical calculations of parameters of an electrical power network where an HTS fuse is used as a fault current limiting device have been done. The calculations were performed for networks containing different types of HTS cables as well. The design of HTS fuse was developed based on the numerical calculation for the network-rated parameters considering the special types 2G HTS tape characteristics.

View Article and Find Full Text PDF

Transmembrane ion transport is a key process in living cells. Active transport of ions is carried out by various ion transporters including microbial rhodopsins (MRs). MRs perform diverse functions such as active and passive ion transport, photo-sensing, and others.

View Article and Find Full Text PDF

The bioactive lysophospholipid sphingosine-1-phosphate (S1P) acts via five different subtypes of S1P receptors (S1PRs) - S1P. S1P is predominantly expressed in nervous and immune systems, regulating the egress of natural killer cells from lymph nodes and playing a role in immune and neurodegenerative disorders, as well as carcinogenesis. Several S1PR therapeutic drugs have been developed to treat these diseases; however, they lack receptor subtype selectivity, which leads to side effects.

View Article and Find Full Text PDF

Microbial rhodopsins are light-sensitive transmembrane proteins, evolutionary adapted by various organisms like archaea, bacteria, simple eukaryote, and viruses to utilize solar energy for their survival. A complete understanding of functional mechanisms of these proteins is not possible without the knowledge of their high-resolution structures, which can be primarily obtained by X-ray crystallography. This technique, however, requires high-quality crystals, growing of which is a great challenge especially in case of membrane proteins.

View Article and Find Full Text PDF

Microbial rhodopsins have become an indispensable tool for neurobiology. Of thousands of identified microbial rhodopsins, a minute fraction has been studied so far and they have shown remarkable functional diversity suggesting more great promises that this large family holds. Effective production of recombinant microbial and viral rhodopsins is a prerequisite for the success of functional and structural studies of these proteins.

View Article and Find Full Text PDF
Article Synopsis
  • The first microbial rhodopsin, bacteriorhodopsin from Halobacterium salinarum, was discovered in 1971 and sparked significant advancements in membrane protein research.
  • Until 1999, only a few types of archaeal rhodopsins were known, but the discovery of bacterial rhodopsin in 2000 opened the door to a new era of research.
  • Rhodopsins are now known to exist across all life domains and even in viruses, demonstrating a wide variety of functions while maintaining similar structures, highlighting their scientific and technological potential.
View Article and Find Full Text PDF

Despite remarkable progress, mainly due to the development of LCP and 'bicelle' crystallization, lack of structural information remains a bottleneck in membrane protein (MP) research. A major reason is the absence of complete understanding of the mechanism of crystallization. Here we present small-angle scattering studies of the evolution of the "bicelle" crystallization matrix in the course of MP crystal growth.

View Article and Find Full Text PDF

Hydrogen bonds are fundamental to the structure and function of biological macromolecules and have been explored in detail. The chains of hydrogen bonds (CHBs) and low-barrier hydrogen bonds (LBHBs) were proposed to play essential roles in enzyme catalysis and proton transport. However, high-resolution structural data from CHBs and LBHBs is limited.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores how small hydrophobic molecules, like inert gases, interact with membrane proteins at a molecular level.
  • Using high pressure atmospheres of argon and krypton, the researchers examined crystals of three well-known membrane proteins, revealing that most gas binding sites were on the outer hydrophobic surface of these proteins.
  • The findings, supported by molecular dynamics simulations, suggest that these interactions could be significant, especially in relation to noble gas-induced anesthesia.
View Article and Find Full Text PDF

Laccases catalyze the oxidation of substrates with the concomitant reduction of oxygen to water. Recently, we found that polar residues located in tunnels leading to Cu2 and Cu3 ions control oxygen entrance (His 165) and proton transport (Arg 240) of two-domain laccase (2D) from (SgfSL). In this work, we have focused on optimizing the substrate-binding pocket (SBP) of SgfSL while simultaneously adjusting the oxygen reduction process.

View Article and Find Full Text PDF

Several signaling pathways control phosphorylation of the proapoptotic protein BAD and its phosphorylation-dependent association with 14-3-3 proteins in the cytoplasm. The stability of the 14-3-3/BAD complex determines the cell fate: unphosphorylated BAD escapes from 14-3-3, migrates to the mitochondria and initiates apoptosis. While the 14-3-3/BAD interaction represents a promising drug target, it lacks structural characterization.

View Article and Find Full Text PDF

The new class of microbial rhodopsins, called xenorhodopsins (XeRs), extends the versatility of this family by inward H pumps. These pumps are an alternative optogenetic tool to the light-gated ion channels (e.g.

View Article and Find Full Text PDF

Rhodopsins, most of which are proton pumps generating transmembrane electrochemical proton gradients, span all three domains of life, are abundant in the biosphere, and could play a crucial role in the early evolution of life on earth. Whereas archaeal and bacterial proton pumps are among the best structurally characterized proteins, rhodopsins from unicellular eukaryotes have not been well characterized. To fill this gap in the current understanding of the proton pumps and to gain insight into the evolution of rhodopsins using a structure-based approach, we performed a structural and functional analysis of the light-driven proton pump LR (Mac) from the pathogenic fungus Leptosphaeria maculans.

View Article and Find Full Text PDF