Publications by authors named "Kovalenko Mikhail"

Background: Free-text sections of pathology reports contain the most important information from a diagnostic standpoint. However, this information is largely underutilized for computer-based analytics. The vast majority of NLP-based methods lack a capacity to accurately extract complex diagnostic entities and relationships among them as well as to provide an adequate knowledge representation for downstream data-mining applications.

View Article and Find Full Text PDF

Background: Visual heuristics of pathology diagnosis is a largely unexplored area where reported studies only provided a qualitative insight into the subject. Uncovering and quantifying pathology visual and nonvisual diagnostic patterns have great potential to improve clinical outcomes and avoid diagnostic pitfalls.

Methods: Here, we present PathEdEx, an informatics computational framework that incorporates whole-slide digital pathology imaging with multiscale gaze-tracking technology to create web-based interactive pathology educational atlases and to datamine visual and nonvisual diagnostic heuristics.

View Article and Find Full Text PDF

Quantitative assessment of serial brain sections provides an objective measure of neurological events at cellular and molecular levels but is difficult to implement in experimental neuroscience laboratories because of variation from person-to-person and the time required for analysis. Whole slide imaging (WSI) technology, recently introduced for pathological diagnoses, offers an electronic environment and a variety of computational tools for performing high-throughput histological analysis and managing the associated information. In our study, we applied various algorithms to quantify histologic changes associated with brain injury and compared the results to manual assessment.

View Article and Find Full Text PDF