Publications by authors named "Koutna I"

Human induced pluripotent stem cells (iPSCs) are inefficiently derived from somatic cells by overexpression of defined transcription factors. Overexpression of H2A histone variant macroH2A1.1, but not macroH2A1.

View Article and Find Full Text PDF

Human embryonic stem cells (hESCs) have unique abilities that enable their use in cell therapy, disease modeling, and drug development. Their derivation is usually performed using a feeder layer, which is undefined and can potentially cause a contamination by xeno components, therefore there is a tendency to replace feeders with xeno-free defined substrates in recent years. Three hESC lines were successfully derived on the vitronectin with a truncated N-terminus (VTN-N) in combination with E-cadherin in xeno-free conditions for the first time, and their undifferentiated state, hESC morphology, and standard karyotypes together with their potential to differentiate into three germ layers were confirmed.

View Article and Find Full Text PDF

Background: Human embryonic stem cells (hESCs) have the unique ability to differentiate into any cell type in the human body and to proliferate indefinitely. Cell therapies involving hESC have shown very promising results for the treatment of certain diseases and confirmed the safety of hESC-derived cells for humans. They are used in cell therapy, mainly in targeted therapy of diseases that are currently incurable.

View Article and Find Full Text PDF

Human embryonic stem cells (hESCs) are increasingly used in clinical trials as they can change the outcome of treatment for many human diseases. They are used as a starting material for further differentiation into specific cell types and to achieve the desirable result of the cell therapy; thus, the quality of hESCs has to be taken into account. Therefore, current good manufacturing practice (cGMP) has to be implemented in the transport of embryos, derivation of inner cell mass to xeno-free, feeder-free and defined hESC culture, and cell freezing.

View Article and Find Full Text PDF

An essential factor of the DNA damage response is 53BP1, a multimeric protein that inhibits the resection-dependent double-strand break (DBS) repair. The p53 protein is a tumor suppressor known as a guardian of the genome. Although the interaction between 53BP1 and its p53 partner is well-known in regulating gene expression, a question remains whether genome injury can affect the interaction between 53BP1 and p53 proteins or p53 binding to DNA.

View Article and Find Full Text PDF

DNA damage repair (DDR) is a safeguard for genome integrity maintenance. Increasing DDR efficiency could increase the yield of induced pluripotent stem cells (iPSC) upon reprogramming from somatic cells. The epigenetic mechanisms governing DDR during iPSC reprogramming are not completely understood.

View Article and Find Full Text PDF

Human embryonic stem cells (hESCs) represent a virtually unlimited source of cells suitable for a variety of biomedical applications. However, a diminishing allogeneic background and undefined culture conditions are essential for developing robust and replicable protocols for differentiation experiments, disease modeling, and drug testing. Therefore, here we report the generation of the two sex-discordant sibling hESC lines, MUNIe008-A and MUNIe009-A, using the mechanical biopsy of vitrified-thawed embryos under xeno- and feeder-free conditions.

View Article and Find Full Text PDF

COVID-19 is caused by the SARS-CoV-2 virus and has spread globally in 2020. Cellular immunity may serve as an important functional marker of the disease, especially in the asymptomatic cases. Blood samples were collected from 46 convalescent donors with a history of COVID-19 and 38 control donors.

View Article and Find Full Text PDF

Chimeric antigen receptor T-cells (CAR T-cells) represent a novel and promising approach in cancer immunotherapy. According to the World Health Organization (WHO), the number of oncological patients is steadily growing in developed countries despite immense progress in oncological treatments, and the prognosis of individual patients is still relatively poor. Exceptional results have been recorded for CAR T-cell therapy in patients suffering from B-cell malignancies.

View Article and Find Full Text PDF

Objective: The work deals with a clinical part of human embryonic stem cell (hESC) research. The aim of the project is the differentiation of somatic cell types, useful in drug development, regenerative medicine and cell therapy. The aim of this work is to enable targeted therapy of yet incurable diseases.

View Article and Find Full Text PDF

Background: Platelets (PLTs) stored at 20-24 °C have a short shelf life of only 5 days, which can result in their restricted availability. PLT cryopreservation extends the shelf life to 2 years.

Methods: We implemented a method of PLT freezing at -80 °C in 5-6% dimethyl sulfoxide.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have become a promising tool in cellular therapy for restoring immune system haemostasis; however, the success of clinical trials has been impaired by the lack of standardized manufacturing processes. This study aims to determine the suitability of source tissues and culture media for the production of MSC-based advanced therapy medicinal products (ATMPs) and to define parameters to extend the set of release criteria. MSCs were isolated from umbilical cord (UC), bone marrow and lipoaspirate and expanded in three different culture media.

View Article and Find Full Text PDF

Since their discovery, induced pluripotent stem cells (iPSCs) had generated considerable interest in the scientific community for their great potential in regenerative medicine, disease modeling, and cell-based therapeutic approach, due to their unique characteristics of self-renewal and pluripotency. Technological advances in iPSC genome-wide epigenetic profiling led to the elucidation of the epigenetic control of cellular identity during nuclear reprogramming. Moreover, iPSC physiology and metabolism are tightly regulated by oxidation-reduction events that mainly occur during the respiratory chain.

View Article and Find Full Text PDF

Human pluripotent stem cells (hPSCs) are a promising source of autologous endothelial progenitor cells (EPCs) that can be used for the treatment of vascular diseases. However, this kind of treatment requires a large amount of EPCs. Therefore, a highly efficient, robust, and easily reproducible differentiation protocol is necessary.

View Article and Find Full Text PDF

Human pluripotent stem cells have the potential to change the way in which human diseases are cured. Clinical-grade human embryonic stem cells and human induced pluripotent stem cells have to be created according to current good manufacturing practices and regulations. Quality and safety must be of the highest importance when humans' lives are at stake.

View Article and Find Full Text PDF

Background: Endothelial progenitor cells (EPCs) were indicated in vascular repair, angiogenesis of ischemic organs, and inhibition of formation of initial hyperplasia. Differentiation of endothelial cells (ECs) from human induced pluripotent stem cells (hiPSC)-derived endothelial cells (hiPSC-ECs) provides an unlimited supply for clinical application. Furthermore, magnetic cell labelling offers an effective way of targeting and visualization of hiPSC-ECs and is the next step towards in vivo studies.

View Article and Find Full Text PDF

The eukaryotic nucleus is a highly complex structure that carries out multiple functions primarily needed for gene expression, and among them, transcription seems to be the most fundamental. Diverse approaches have demonstrated that transcription takes place at discrete sites known as transcription factories, wherein RNA polymerase II (RNAP II) is attached to the factory and immobilized while transcribing DNA. It has been proposed that transcription factories promote chromatin loop formation, creating long-range interactions in which relatively distant genes can be transcribed simultaneously.

View Article and Find Full Text PDF

New approaches in regenerative medicine and vasculogenesis have generated a demand for sufficient numbers of human endothelial cells (ECs). ECs and their progenitors reside on the interior surface of blood and lymphatic vessels or circulate in peripheral blood; however, their numbers are limited, and they are difficult to expand after isolation. Recent advances in human induced pluripotent stem cell (hiPSC) research have opened possible avenues to generate unlimited numbers of ECs from easily accessible cell sources, such as the peripheral blood.

View Article and Find Full Text PDF

The potential clinical applications of hematopoietic stem cells (HSCs) derived from human pluripotent stem cells (hPSCs) are limited by the difficulty of recapitulating embryoid hematopoiesis and by the unknown differentiation potential of hPSC lines. To evaluate their hematopoietic developmental potential, available hPSC lines were differentiated by an embryoid body (EB) suspension culture in serum-free medium supplemented with three different cytokine mixes (CMs). The hPSC differentiation status was investigated by the flow cytometry expression profiles of cell surface molecules, and the gene expression of pluripotency and differentiation markers over time was evaluated by real-time reverse transcription polymerase chain reaction (qRT-PCR).

View Article and Find Full Text PDF

Background: Human induced pluripotent stem cells (hiPSCs) play roles in both disease modelling and regenerative medicine. It is critical that the genomic integrity of the cells remains intact and that the DNA repair systems are fully functional. In this article, we focused on the detection of DNA double-strand breaks (DSBs) by phosphorylated histone H2AX (known as γH2AX) and p53-binding protein 1 (53BP1) in three distinct lines of hiPSCs, their source cells, and one line of human embryonic stem cells (hESCs).

View Article and Find Full Text PDF

The potential clinical applications of human induced pluripotent stem cells (hiPSCs) are limited by genetic and epigenetic variations among hiPSC lines and the question of their equivalency with human embryonic stem cells (hESCs). We used MethylScreen technology to determine the DNA methylation profile of pluripotency and differentiation markers in hiPSC lines from different source cell types compared to hESCs and hiPSC source cells. After derivation, hiPSC lines compromised a heterogeneous population characterized by variable levels of aberrant DNA methylation.

View Article and Find Full Text PDF

The molecular machinery of endoplasmic reticulum (ER) integrates various intracellular and extracellular cues to maintain homeostasis in diverse physiological or pathological scenarios. ER stress and the unfolded protein response (UPR) have been found to mediate molecular and biochemical mechanisms that affect cell proliferation, differentiation, and apoptosis. Although a number of reviews on the ER stress response have been published, comprehensive reviews that broadly summarize ER physiology in the context of pluripotency, embryonic development, and tissue homeostasis are lacking.

View Article and Find Full Text PDF

The incorporation of histone H3 with an acetylated lysine 56 (H3K56ac) into the nucleosome is important for chromatin remodeling and serves as a marker of new nucleosomes during DNA replication and repair in yeast. However, in human cells, the level of H3K56ac is greatly reduced, and its role during the cell cycle is controversial. Our aim was to determine the potential of H3K56ac to regulate cell cycle progression in different human cell lines.

View Article and Find Full Text PDF

The generation of haematopoietic progenitors from human pluripotent stem cells (hPSCs) presents great promise for cell-replacement therapies. However, current protocols for haematopoietic differentiation of hPSCs suffer from low efficiency and functional defects in the derived cells. The technology is also limited by variable ability of hPSC lines to generate blood cells in vitro.

View Article and Find Full Text PDF

Preclinical studies have demonstrated the promising potential of human induced pluripotent stem cells (hiPSCs) for clinical application. To fulfil this goal, efficient and safe methods to generate them must be established. Various reprogramming techniques were presented during seven years of hiPSCs research.

View Article and Find Full Text PDF