Circulating levels of fibroblast growth factor 23 (FGF23) are elevated in patients with early chronic kidney disease (CKD) and are postulated to cause low blood levels of 1,25-dihydroxyvitamin D, as well as normal phosphate levels. In order to provide more direct evidence for the pathophysiological role of FGF23 in the settings of mineral ion homeostasis typically seen in early CKD, we studied rats with progressive CKD treated with anti-FGF23 neutralizing antibody. Without antibody treatment, rats with CKD exhibited high circulating levels of FGF23 and parathyroid hormone, low 1,25-dihydroxyvitamin D, and normal serum phosphate levels, accompanied by increased fractional excretion of phosphate.
View Article and Find Full Text PDFFGF23 is a unique member of the fibroblast growth factor (FGF) family because it acts as a hormone that derives from bone and regulates kidney functions, whereas most other family members are thought to regulate various cell functions at a local level. The renotropic activity of circulating FGF23 indicates the possible presence of an FGF23-specific receptor in the kidney. Here we show that a previously undescribed receptor conversion by Klotho, a senescence-related molecule, generates the FGF23 receptor.
View Article and Find Full Text PDFMacrosphelide B (MSB), a 16-membered macrolide from Microsphaeropsis sp. FO-5050, inhibits adhesion of sialyl Lewis(x) (sLe(x))-expressing HL-60 cells to LPS-activated (E-selectin-expressing) human umbilical vein endothelial cells (HUVECs) in vitro. This study examines MSB effects on metastasis of B16/BL6 mouse melanoma cells (B16/BL6 cells) and L5178Y-ML mouse lymphoma cells in vivo and analyzes the MSB antimetastatic activity mechanism.
View Article and Find Full Text PDF