Publications by authors named "Kousik Chandra"

Article Synopsis
  • Human amylin (hIAPP) forms amyloid deposits in the pancreatic cells of almost all type 2 diabetes patients, while rat amylin (rIAPP) and pramlintide are non-toxic.
  • Researchers focused on the central region of the amylin sequence (residues 20 to 29) to see how changing specific amino acids affects aggregation.
  • Six amylin-derived fragments were tested using various analytical methods like NMR, ThT assays, AFM, and cytotoxicity tests to explore how substitutions and metal ion interactions influence amylin's aggregation properties.
View Article and Find Full Text PDF

Since ancient times, the inhabitants of dry areas have depended on the date palm (Phoenix dactylifera L.) as a staple food and means of economic security. For example, dates have been a staple diet for the inhabitants of the Arabian Peninsula and Sahara Desert in North Africa for millennia and the local culture is rich in knowledge and experience with the benefits of dates, suggesting that dates contain many substances essential for the human body.

View Article and Find Full Text PDF

Human serum albumin (HSA) is the main zinc(II) carrier in blood plasma. The HSA site with the strongest affinity for zinc(II), multi-metal binding site A, is disrupted by the presence of fatty acids (FAs). Therefore, the FA concentration in the blood influences zinc distribution, which may affect both normal physiological processes and a range of diseases.

View Article and Find Full Text PDF
Article Synopsis
  • Thymosin β4 (Tβ4) is a protein discovered from calf thymus that plays multiple roles in blood clotting, tissue regeneration, and inflammation, but its mechanisms are not fully understood.
  • Recent research shows that Tβ4 could influence ferroptosis, a type of cell death linked to neurodegeneration and cancer cell survival, by acting as an iron chelator in cellular environments.
  • These findings suggest that carefully regulating Tβ4 levels could lead to new treatment strategies for cancer and degenerative diseases by potentially controlling ferroptosis.
View Article and Find Full Text PDF

Here, we implemented and validated a suite of selective and non-selective CPMG-filtered 1D and 2D TOCSY/HSQC experiments for metabolomics research. They facilitated the unambiguous identification of metabolites embedded in broad lipid and protein signals. The 2D spectra improved non-targeted analysis by removing the background broad signals of macromolecules.

View Article and Find Full Text PDF

NMR-based metabolomics, which emerged along with mass spectrometry techniques, is the preferred method for studying metabolites in medical research and food industries. However, NMR techniques suffer from inherently low sensitivity, regardless of their superior reproducibility. To overcome this, we made two beneficial modifications: we detuned the probe to reach a position called "Spin Noise Tuning Optimum" (SNTO), and we replaced the conventional cylindrical 5 mm NMR tube with an electric field component-optimized shaped tube.

View Article and Find Full Text PDF

Studying disease models at the molecular level is vital for drug development in order to improve treatment and prevent a wide range of human pathologies. Microbial infections are still a major challenge because pathogens rapidly and continually evolve developing drug resistance. Cancer cells also change genetically, and current therapeutic techniques may be (or may become) ineffective in many cases.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR)-based metabolomics has witnessed rapid advancements in recent years with the continuous development of new methods to enhance the sensitivity, resolution, and speed of data acquisition. Some of the approaches were earlier used for peptide and protein resonance assignments and have now been adapted to metabolomics. At the same time, new NMR methods involving novel data acquisition techniques, suited particularly for high-throughput analysis in metabolomics, have been developed.

View Article and Find Full Text PDF

An approach for rapid backbone resonance assignments in proteins using only two 2D NMR experiments is presented. The new method involves a combination of high-resolution 13Cα-detected NMR experiments and selective unlabeling of amino acid residues. The 13C detected 2D hNCA and 2D hNcoCA spectra of a uniformly labeled sample of the protein are analysed in concert with the 2D hNCA spectrum obtained for a selectively unlabeled sample.

View Article and Find Full Text PDF

Spin noise spectroscopy has attracted considerable attention recently owing partly to intrinsic interest in the phenomenon and partly to its significant application potential. Here, we address the inherent problem of low sensitivity of nuclear spin noise and examine the utility of wavelet transform to mitigate this problem by distinguishing real peaks from the noise contaminated data. Suppression of the random circuit noise and the consequent enhancement of the correlated nuclear spin noise signal have been demonstrated with discrete wavelet transform.

View Article and Find Full Text PDF

A major breakthrough in speed and sensitivity of 2 D spin-noise-detected NMR is achieved owing to a new acquisition and processing scheme called "double block usage" (DBU) that utilizes each recorded noise block in two independent cross-correlations. The mixing, evolution, and acquisition periods are repeated head-to-tail without any recovery delays and well-known building blocks of multidimensional NMR (constant-time evolution and quadrature detection in the indirect dimension as well as pulsed field gradients) provide further enhancement and artifact suppression. Modified timing of the receiver electronics eliminates spurious random excitation.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR)-based metabolomics relies mostly on 1D NMR; however, the technique is limited by overlap of the signals from the metabolites. In order to circumvent this problem, 2D H-C correlation spectroscopy techniques are often used. However owing to poorer natural abundance and gyromagnetic ratio of C, the acquisition time for 2D H-C heteronuclear single quantum coherence spectroscopy (HSQC) is long.

View Article and Find Full Text PDF

We present a novel method that breaks the resolution barrier in nuclear magnetic resonance (NMR) spectroscopy, allowing one to accurately estimate the chemical shift values of highly overlapping or broadened peaks. This problem is routinely encountered in NMR when peaks have large linewidths due to rapidly decaying signals, hindering its application. We address this problem based on the notion of finite-rate-of-innovation (FRI) sampling, which is based on the premise that signals such as the NMR signal, can be accurately reconstructed using fewer measurements than that required by existing approaches.

View Article and Find Full Text PDF

In Alzheimer's disease (AD), amyloid β (Aβ) protein plays a detrimental role in neuronal injury and death. Recent in vitro and in vivo studies suggest that soluble oligomers of the Aβ peptide are neurotoxic. Structural properties of the oligomeric assembly, however, are largely unknown.

View Article and Find Full Text PDF

We present a simple approach to rapidly identify amino acid types in proteins from a 2D spectrum. The method is based on the fact that (13)C(β) chemical shifts of different amino acid types fall in distinct spectral regions. By evolving the (13)C chemical shifts in the conventional HNCACB or HN(CO)CACB type experiment for a single specified delay period, the phase of the cross peaks of different amino acid residues are modulated depending on their (13)C(β) shift values.

View Article and Find Full Text PDF

In recent years, silver nanoparticles (AgNPs) have attracted significant attention owing to their unique physicochemical, optical, conductive and antimicrobial properties. One of the properties of AgNPs which is crucial for all applications is their stability. In the present study we unravel a mechanism through which silver nanoparticles are rendered ultrastable in an aqueous solution in complex with the protein ubiquitin (Ubq).

View Article and Find Full Text PDF

The extrinsic proteins of photosystem II of higher plants and green algae PsbO, PsbP, PsbQ, and PsbR are essential for stable oxygen production in the oxygen evolving center. In the available X-ray crystallographic structure of higher plant PsbQ residues S14-Y33 are missing. Building on the backbone NMR assignment of PsbQ, which includes this "missing link", we report the extended resonance assignment including side chain atoms.

View Article and Find Full Text PDF

Branched Chain Amino Acids (BCAAs) are related to different aspects of diseases like pathogenesis, diagnosis and even prognosis. While in some diseases, levels of all the BCAAs are perturbed; in some cases, perturbation occurs in one or two while the rest remain unaltered. In case of ischemic heart disease, there is an enhanced level of plasma leucine and isoleucine but valine level remains unaltered.

View Article and Find Full Text PDF

PsbP (23 kDa) is an extrinsic eukaryotic protein of photosystem II found in the thylakoid membrane of higher plants and green algae. It has been proven to be indispensable for proper functioning of the oxygen evolving complex. By interaction with other extrinsic proteins (PsbQ, PsbO and PsbR), it modulates the concentration of two cofactors of the water splitting reaction, Ca(2+) and Cl(-).

View Article and Find Full Text PDF

Many members of the neuronal calcium sensor (NCS) protein family have a striking coexistence of two characteristics, that is, N-myristoylation and the cryptic EF-1 motif. We investigated the rationale behind this correlation in neuronal calcium sensor-1 (NCS-1) by restoring Ca(2+) binding ability of the disabled EF-1 loop by appropriate mutations. The concurrence of canonical EF-1 and N-myristoylation considerably decreased the overall Ca(2+) affinity, conformational flexibility, and functional activation of downstream effecter molecules (i.

View Article and Find Full Text PDF

An NMR-based approach for rapid characterization of translational diffusion of molecules has been developed. Unlike the conventional method of acquiring a series of 2D (13)C and (1)H spectra, the proposed approach involves a single 2D NMR spectrum, which can be acquired in minutes. Using this method, it was possible to detect the presence of intermediate oligomeric species of diphenylalanine in solution during the process of its self-assembly to form nanotubular structures.

View Article and Find Full Text PDF

We introduce two-dimensional NMR spectroscopy detected by recording and processing the noise originating from nuclei that have not been subjected to any radio frequency excitation. The method relies on cross-correlation of two noise blocks that bracket the evolution and mixing periods. While the sensitivity of the experiment is low in conventional NMR setups, spin-noise-detected NMR spectroscopy has great potential for use with extremely small numbers of spins, thereby opening a way to nanoscale multidimensional NMR spectroscopy.

View Article and Find Full Text PDF

Kinetics and thermodynamics of amide hydrogen exchange in proteins can be investigated with two-dimensional (13)CO-(15)N NMR correlation experiments. The spectra are acquired with high resolution and sensitivity. A single type of experiment on one sample serves to characterize hydrogen-deuterium fractionation factors and hydrogen-exchange rates that span three orders of magnitude.

View Article and Find Full Text PDF

The folding and unfolding of structurally similar proteins belonging to a family have long been a focus of investigation of the structure-(un)folding relationship. Such studies are yet to reach a consensus about whether structurally similar domains follow common or different unfolding pathways. Members of the βγ-crystallin superfamily, which consists of structurally similar proteins with limited sequence similarity from diverse life forms spanning microbes to mammals, form an appropriate model system for exploring this relationship further.

View Article and Find Full Text PDF

We present reduced dimensionality (RD) 3D HN(CA)NH for efficient sequential assignment in proteins. The experiment correlates the (15)N and (1)H chemical shift of a residue ('i') with those of its immediate N-terminal (i - 1) and C-terminal (i + 1) neighbors and provides four-dimensional chemical shift correlations rapidly with high resolution. An assignment strategy is presented which combines the correlations observed in this experiment with amino acid type information obtained from 3D CBCA(CO)NH.

View Article and Find Full Text PDF