IEEE Trans Biomed Circuits Syst
February 2022
In this paper, we propose a lightweight neural network for real-time electrocardiogram (ECG) anomaly detection and system level power reduction of wearable Internet of Things (IoT) Edge sensors. The proposed network utilizes a novel hybrid architecture consisting of Long Short Term Memory (LSTM) cells and Multi-Layer Perceptrons (MLP). The LSTM block takes a sequence of coefficients representing the morphology of ECG beats while the MLP input layer is fed with features derived from instantaneous heart rate.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
The abnormal pause or rate reduction in breathing is known as the sleep-apnea hypopnea syndrome and affects the quality of sleep of an individual. A novel method for the detection of sleep apnea events (pause in breathing) from peripheral oxygen saturation (SpO2) signals obtained from wearable devices is discussed in this paper. The paper details an apnea detection algorithm of a very high resolution on a per-second basis for which a 1-dimensional convolutional neural network- which we termed SomnNET- is developed.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
December 2021
With advances in circuit design and sensing technology, the acquisition of data from a large number of Internet of Things (IoT) sensors simultaneously to enable more accurate inferences has become mainstream. In this work, we propose a novel convolutional neural network (CNN) model for the fusion of multimodal and multiresolution data obtained from several sensors. The proposed model enables the fusion of multiresolution sensor data, without having to resort to padding/ resampling to correct for frequency resolution differences even when carrying out temporal inferences like high-resolution event detection.
View Article and Find Full Text PDFIEEE J Transl Eng Health Med
April 2018
Smartphone cameras can measure heart rate (HR) by detecting pulsatile photoplethysmographic (iPPG) signals from post-processing the video of a subject's face. The iPPG signal is often derived from variations in the intensity of the green channel as shown by Poh and Verkruysse . In this pilot study, we have introduced a novel iPPG method where by measuring variations in color of reflected light, i.
View Article and Find Full Text PDF