Background: Reading impairments, a common consequence of stroke-induced aphasia, significantly hinder life participation, affecting both functional and leisure activities. Traditional post-stroke rehabilitation strategies often show limited generalization beyond trained materials, underscoring the need for novel interventions targeting the underlying neural mechanisms.
Method: This study investigates the feasibility and potential effectiveness of real-time functional magnetic resonance imaging (fMRI) neurofeedback (NFB) intervention for reading deficits associated with stroke and aphasia.
Introduction: Maladaptive functioning of the amygdala has been associated with impaired emotion regulation in affective disorders. Recent advances in real-time fMRI neurofeedback have successfully demonstrated the modulation of amygdala activity in healthy and psychiatric populations. In contrast to an abstract feedback representation applied in standard neurofeedback designs, we proposed a novel neurofeedback paradigm using naturalistic stimuli like human emotional faces as the feedback display where change in the facial expression intensity (from neutral to happy or from fearful to neutral) was coupled with the participant's ongoing bilateral amygdala activity.
View Article and Find Full Text PDFEffective connectivity based on functional magnetic resonance imaging (fMRI) allows assessing directions of interaction between brain regions. For real-time fMRI, we compared models of positive social emotion regulation based on a network involving the bilateral amygdala, dorsomedial prefrontal, and subgenual anterior cingulate cortex. The top-down regulation model implied modulation of the dorsomedial prefrontal cortex exerted onto other regions, while the bottom-up model implied the inverse modulation.
View Article and Find Full Text PDFIntroduction: Neurofeedback based on functional magnetic resonance imaging allows for learning voluntary control over one's own brain activity, aiming to enhance cognition and clinical symptoms. We previously reported improved sustained attention temporarily by training healthy participants to up-regulate the differential activity of the sustained attention network minus the default mode network (DMN). However, the long-term brain and behavioral effects of this training have not yet been studied.
View Article and Find Full Text PDFReal-time quality assessment (rtQA) of functional magnetic resonance imaging (fMRI) based on blood oxygen level-dependent (BOLD) signal changes is critical for neuroimaging research and clinical applications. The losses of BOLD sensitivity because of different types of technical and physiological noise remain major sources of fMRI artifacts. Due to difficulty of subjective visual perception of image distortions during data acquisitions, a comprehensive automatic rtQA is needed.
View Article and Find Full Text PDFWhile functional MRI (fMRI) localizes brain activation and deactivation, functional MRS (fMRS) provides insights into the underlying metabolic conditions. There is much interest in measuring task-induced and resting levels of metabolites implicated in neuroenergetics (e.g.
View Article and Find Full Text PDFNeurofeedback allows for the self-regulation of brain circuits implicated in specific maladaptive behaviors, leading to persistent changes in brain activity and connectivity. Positive-social emotion regulation neurofeedback enhances emotion regulation capabilities, which is critical for reducing the severity of various psychiatric disorders. Training dorsomedial prefrontal cortex (dmPFC) to exert a top-down influence on bilateral amygdala during positive-social emotion regulation progressively (linearly) modulates connectivity within the trained network and induces positive mood.
View Article and Find Full Text PDFBackground And Purpose: Delirium, an acute reduction in cognitive functioning, hinders stroke recovery and contributes to cognitive decline. Right-hemisphere stroke is linked with higher delirium incidence, likely, due to the prevalence of spatial neglect (SN), a right-brain disorder of spatial processing. This study tested if symptoms of delirium and SN after right-hemisphere stroke are associated with abnormal function of the right-dominant neural networks specialized for maintaining attention, orientation, and arousal.
View Article and Find Full Text PDFReal-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
May 2021
Neuroimaging with functional MRI (fMRI) identifies activated and deactivated brain regions in task-based paradigms. These patterns of (de)activation are altered in diseases, motivating research to understand their underlying biochemical/biophysical mechanisms. Essentially, it remains unknown how aerobic metabolism of glucose to lactate (aerobic glycolysis) and excitatory-inhibitory balance of glutamatergic and GABAergic neuronal activities vary in these areas.
View Article and Find Full Text PDFNeurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success.
View Article and Find Full Text PDFThe brain regions supporting sustained attention (sustained attention network; SAN) and mind-wandering (default-mode network; DMN) have been extensively studied. Nevertheless, this knowledge has not yet been translated into advanced brain-based attention training protocols. Here, we used network-based real-time functional magnetic resonance imaging (fMRI) to provide healthy individuals with information about current activity levels in SAN and DMN.
View Article and Find Full Text PDFPositive-social emotions mediate one's cognitive performance, mood, well-being, and social bonds, and represent a critical variable within therapeutic settings. It has been shown that the upregulation of positive emotions in social situations is associated with increased top-down signals that stem from the prefrontal cortices (PFC) which modulate bottom-up emotional responses in the amygdala. However, it remains unclear if positive-social emotion upregulation of the amygdala occurs directly through the dorsomedial PFC (dmPFC) or indirectly linking the bilateral amygdala with the dmPFC via the subgenual anterior cingulate cortex (sgACC), an area which typically serves as a gatekeeper between cognitive and emotion networks.
View Article and Find Full Text PDFNeurofeedback has begun to attract the attention and scrutiny of the scientific and medical mainstream. Here, neurofeedback researchers present a consensus-derived checklist that aims to improve the reporting and experimental design standards in the field.
View Article and Find Full Text PDFResearch into hippocampal self-regulation abilities may help determine the clinical significance of hippocampal hyperactivity throughout the pathophysiological continuum of Alzheimer's disease. In this study, we aimed to identify the effects of amyloid-β peptide 42 (amyloid-β42) and phosphorylated tau on the patterns of functional connectomics involved in hippocampal downregulation. We identified 48 cognitively unimpaired participants (22 with elevated CSF amyloid-β peptide 42 levels, 15 with elevated CSF phosphorylated tau levels, mean age of 62.
View Article and Find Full Text PDFAs a consequence of recent technological advances in the field of functional magnetic resonance imaging (fMRI), results can now be made available in real-time. This allows for novel applications such as online quality assurance of the acquisition, intra-operative fMRI, brain-computer-interfaces, and neurofeedback. To that aim, signal processing algorithms for real-time fMRI must reliably correct signal contaminations due to physiological noise, head motion, and scanner drift.
View Article and Find Full Text PDFPositive emotions facilitate cognitive performance, and their absence is associated with burdening psychiatric disorders. However, the brain networks regulating positive emotions are not well understood, especially with regard to engaging oneself in positive-social situations. Here we report convergent evidence from a multimodal approach that includes functional magnetic resonance imaging (fMRI) brain activations, meta-analytic functional characterization, Bayesian model-driven analysis of effective brain connectivity, and personality questionnaires to identify the brain networks mediating the cognitive up-regulation of positive-social emotions.
View Article and Find Full Text PDFCan we change our perception by controlling our brain activation? Awareness during binocular rivalry is shaped by the alternating perception of different stimuli presented separately to each monocular view. We tested the possibility of causally influencing the likelihood of a stimulus entering awareness. To do this, participants were trained with neurofeedback, using realtime functional magnetic resonance imaging (rt-fMRI), to differentially modulate activation in stimulus-selective visual cortex representing each of the monocular images.
View Article and Find Full Text PDFWhile functional MRI (fMRI) localizes regions of brain activation, functional MRS (fMRS) provides insights into metabolic underpinnings. Previous fMRS studies detected task-induced lactate increase using short echo-time non-edited H-MRS protocols, where lactate changes depended on accurate exclusion of overlapping lactate and lipid/macromolecule signals. Because long echo-time J-difference H-MRS detection of lactate is less susceptible to this shortcoming, we posited if J-edited fMRS protocol could reliably detect metabolic changes in the human motor cortex during a finger-tapping paradigm in relation to a reliable measure of basal lactate.
View Article and Find Full Text PDFNeurofeedback based on real-time functional MRI is an emerging technique to train voluntary control over brain activity in healthy and disease states. Recent developments even allow for training of brain networks using connectivity feedback based on dynamic causal modeling (DCM). DCM is an influential hypothesis-driven approach that requires prior knowledge about the target brain network dynamics and the modulatory influences.
View Article and Find Full Text PDFHere, we briefly describe the real-time fMRI data that is provided for testing the functionality of the open-source Python/Matlab framework for neurofeedback, termed Open NeuroFeedback Training (, Koush et al. [1]). The data set contains real-time fMRI runs from three anonymized participants (i.
View Article and Find Full Text PDFNeurofeedback based on real-time functional magnetic resonance imaging (rt-fMRI) is a novel and rapidly developing research field. It allows for training of voluntary control over localized brain activity and connectivity and has demonstrated promising clinical applications. Because of the rapid technical developments of MRI techniques and the availability of high-performance computing, new methodological advances in rt-fMRI neurofeedback become possible.
View Article and Find Full Text PDFNeurofeedback based on real-time functional magnetic resonance imaging (fMRI) is an emerging technique that allows for learning voluntary control over brain activity. Such brain training has been shown to cause specific behavioral or cognitive enhancements, and even therapeutic effects in neurological and psychiatric patient populations. However, for clinical applications it is important to know if learned self-regulation can be maintained over longer periods of time and whether it transfers to situations without neurofeedback.
View Article and Find Full Text PDFThe emerging technique of real-time fMRI neurofeedback trains individuals to regulate their own brain activity via feedback from an fMRI measure of neural activity. Optimum feedback presentation has yet to be determined, particularly when working with clinical populations. To this end, we compared continuous against intermittent feedback in subjects with tinnitus.
View Article and Find Full Text PDFAuditory verbal hallucinations (AVHs) are a hallmark of schizophrenia and can significantly impair patients' emotional, social, and occupational functioning. Despite progress in psychopharmacology, over 25% of schizophrenia patients suffer from treatment-resistant hallucinations. In the search for alternative treatment methods, neurofeedback (NF) emerges as a promising therapy tool.
View Article and Find Full Text PDF