Publications by authors named "Kounbobr R Dabire"

Pyrethroids are the most widely used insecticides to control vector borne diseases including malaria. Physiological resistance mechanisms to these insecticides have been well described, whereas those for behavioral resistance remain overlooked. Field data suggest the presence of spatial sensory detection by Anopheles mosquitoes of the pyrethroid molecules used in insecticide-based control tools, such as long-lasting insecticide nets or insecticide residual spraying.

View Article and Find Full Text PDF

Background: The direct membrane feeding assay (DMFA), whereby gametocyte-infected blood is collected from human donors and from which mosquitoes feed through a membrane, is proving essential for assessing parameters influencing Plasmodium transmission potential in endemic countries. The success of DMFAs is closely tied to gametocyte density in the blood, with relatively high gametocytaemia ensuring optimal infection levels in mosquitoes. As transmission intensity declines with control efforts, the occurrence of asymptomatic individuals with low gametocyte densities, who can significantly contribute to the infectious reservoir, is increasing.

View Article and Find Full Text PDF

Host age variation is a striking source of heterogeneity that can shape the evolution and transmission dynamic of pathogens. Compared with vertebrate systems, our understanding of the impact of host age on invertebrate-pathogen interactions remains limited. We examined the influence of mosquito age on key life-history traits driving human malaria transmission.

View Article and Find Full Text PDF

In the fight against malaria, transmission blocking interventions (TBIs) such as transmission blocking vaccines or drugs, are promising approaches to complement conventional tools. They aim to prevent the infection of vectors and thereby reduce the subsequent exposure of a human population to infectious mosquitoes. The effectiveness of these approaches has been shown to depend on the initial intensity of infection in mosquitoes, often measured as the mean number of oocysts resulting from an infectious blood meal in absence of intervention.

View Article and Find Full Text PDF

This study aims to evaluate the factors influencing the adherence to the 2nd and 3rd doses of Amodiaquine (AQ) during seasonal malaria chemoprevention (SMC) in Burkina Faso, Mali, and Niger. Overall, 3132 people were interviewed during surveys between 2019 and 2020 in 15 health districts. In Burkina Faso, Mali, and Niger, the proportions of non-adherence were 4.

View Article and Find Full Text PDF

The mating behaviour of the malaria vector Anopheles gambiae complex is an important aspect of its reproduction biology. The success of mosquito release programmes based on genetic control of malaria crucially depends on competitive mating between both laboratory-reared and wild individuals, and populations from different localities. It is known that intrinsic and extrinsic factors can influence the mating success.

View Article and Find Full Text PDF

Despite its epidemiological importance, the time Plasmodium parasites take to achieve development in the vector mosquito (the extrinsic incubation period, EIP) remains poorly characterized. A novel non-destructive assay designed to estimate EIP in single mosquitoes, and more broadly to study Plasmodium-Anopheles vectors interactions, is presented. The assay uses small pieces of cotton wool soaked in sugar solution to collect malaria sporozoites from individual mosquitoes during sugar feeding to monitor infection status over time.

View Article and Find Full Text PDF

Malaria, a vector-borne disease caused by Plasmodium spp., remains a major global cause of mortality. Optimization of disease control strategies requires a thorough understanding of the processes underlying parasite transmission.

View Article and Find Full Text PDF

Background: The sterile insect technique (SIT) is a vector control strategy relying on the mass release of sterile males into wild vector populations. Current sex separation techniques are not fully efficient and could lead to the release of a small proportion of females. It is therefore important to evaluate the effect of irradiation on the ability of released females to transmit pathogens.

View Article and Find Full Text PDF

Background: It is assumed that malaria vectors feed on locally available nectar sources to obtain energy. Sugar feeding is energetically critical for the Anopheles male swarming and mating activities. However, little is known about the impact of local nectar feeding on male physiological development and its consequences on male mosquito life traits in the malaria control context.

View Article and Find Full Text PDF
Article Synopsis
  • The black soldier fly, yellow mealworm, and house fly are effective protein sources for rearing mosquito larvae due to their easy breeding and beneficial environmental and nutritional qualities.
  • A new diet based on insect meal offers a more cost-effective alternative to traditional animal-based diets for producing Aedes albopictus and Ae. aegypti mosquitoes.
  • Two recommended mixtures for optimal mosquito production consist of combinations of tuna meal, black soldier fly, and brewer’s yeast, which could also be applicable to other mosquito species for genetic control efforts.
View Article and Find Full Text PDF

A severe outbreak of dengue occurred in Burkina Faso in 2016, with the most cases reported in Ouagadougou, that highlights the necessity to implement vector surveillance system. This study aims to estimate the risk of arboviruses transmission and the insecticide susceptibility status of potential vectors in four sites in Burkina Faso. From June to September 2016, house-to-house cross sectional entomological surveys were performed in four cities stretching along a southwest-to-northeast railway transect.

View Article and Find Full Text PDF

Swarming is a key part of the natural system of reproduction of anopheline mosquito populations, and a better understanding of swarming and mating systems in a targeted species in its natural habitat would contribute to better design control strategies with a greater chance of success. Our study investigated the monthly occurrence of swarming and the mating frequency (within swarms) of Anopheles arabiensis in Dioulassoba, Burkina Faso and their relationship with local environmental factors. Mosquitoes collected from swarms were described in terms of body size, recent sugar meal intake, and female repletion, insemination, and Plasmodium falciparum infection status.

View Article and Find Full Text PDF

Evaluating the risk of emergence and transmission of vector-borne diseases requires knowledge of the genetic and environmental contributions to pathogen transmission traits. Compared to the significant effort devoted to understanding the biology of malaria transmission from vertebrate hosts to mosquito vectors, the strategies that malaria parasites have evolved to maximize transmission from vectors to vertebrate hosts have been largely overlooked. While determinants of infection success within the mosquito host have recently received attention, the causes of variability for other key transmission traits of malaria, namely the duration of parasite development and its virulence within the vector, as well as its ability to alter mosquito behavior, remain largely unknown.

View Article and Find Full Text PDF

Background: Larval nutrition, particularly diet quality, is a key driver in providing sufficient numbers of high quality mosquitoes for biological control strategies such as the sterile insect technique. The diet currently available to mass rear Anopheles arabiensis, referred here to as the "IAEA diet", is facing high costs and difficulties concerning the availability of the bovine liver powder component. To promote more affordable and sustainable mosquito production, the present study aimed to find alternative diet mixtures.

View Article and Find Full Text PDF

Whether malaria parasites can manipulate mosquito host choice in ways that enhance parasite transmission toward suitable hosts and/or reduce mosquito attraction to unsuitable hosts (i.e. specific manipulation) is unknown.

View Article and Find Full Text PDF

This paper highlights the critical importance of evidence on vector-borne diseases (VBD) prevention and control interventions in urban settings when assessing current and future needs, with a view to setting policy priorities that promote inclusive and equitable urban health services. Research should produce knowledge about policies and interventions that are intended to control and prevent VBDs at the population level and to reduce inequities. Such interventions include policy, program, and resource distribution approaches that address the social determinants of health and exert influence at organizational and system levels.

View Article and Find Full Text PDF

Exposure to stress during an insect's larval development can have carry-over effects on adult life history traits and susceptibility to pathogens. We investigated the effects of larval nutritional stress for the first time using field mosquito vectors and malaria parasites. In contrast to previous studies, we show that larval nutritional stress may affect human to mosquito transmission antagonistically: nutritionally deprived larvae showed lower parasite prevalence for only one gametocyte carrier; they also had lower fecundity.

View Article and Find Full Text PDF

Anopheles gambiae are a major vector of malaria in sub-Saharan Africa. Viruses that naturally infect these mosquitoes may impact their physiology and ability to transmit pathogens. We therefore used metagenomics sequencing to search for viruses in adult Anopheles mosquitoes collected from Liberia, Senegal, and Burkina Faso.

View Article and Find Full Text PDF

The ecological context in which mosquitoes and malaria parasites interact has received little attention, compared to the genetic and molecular aspects of malaria transmission. Plant nectar and fruits are important for the nutritional ecology of malaria vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for malaria parasites is unclear. To test this, we infected Anopheles coluzzi, an important African malaria vector, with sympatric field isolates of Plasmodium falciparum, using direct membrane feeding assays.

View Article and Find Full Text PDF

Background: Many studies have shown that the environment in which larvae develop can influence adult characteristics with consequences for the transmission of pathogens. We investigated how two environmental stresses (larviciding and nutritional stress) interact to affect Anopheles gambiae (previously An. gambiae S molecular form) life history traits and its susceptibility for field isolates of its natural malaria agent Plasmodium falciparum.

View Article and Find Full Text PDF

Background: The significant malaria burden in Africa has often eclipsed other febrile illnesses. Burkina Faso's first dengue epidemic occurred in 1925 and the most recent in 2013. Yet there is still very little known about dengue prevalence, its vector proliferation, and its poverty and equity impacts.

View Article and Find Full Text PDF

Background: Survival to dry season conditions of sub-Saharan savannahs is a major challenge for insects inhabiting such environments, especially regarding the desiccation threat they are exposed to. While extensive literature about insect seasonality has revealed morphologic, metabolic and physiological changes in many species, only a few studies have explored the responses following exposure to the stressful dry season conditions in major malaria vectors. Here, we explored morphological changes triggered by exposure to dry season conditions in An.

View Article and Find Full Text PDF

Accumulating evidence indicates that species interactions such as competition and predation can indirectly alter interactions with other community members, including parasites. For example, presence of predators can induce behavioural defences in the prey, resulting in a change in susceptibility to parasites. Such predator-induced phenotypic changes may be especially pervasive in prey with discrete larval and adult stages, for which exposure to predators during larval development can have strong carry-over effects on adult phenotypes.

View Article and Find Full Text PDF