The transcription of organellar genes is performed by three nuclear-encoded RNA polymerases: RPOTm, RPOTmp, and RPOTp. The RPOTmp protein possesses ambiguous transit peptides, allowing participation in gene expression control in both mitochondria and chloroplasts, although its function in plastids is still under discussion. Here, we show that the overexpression of RPOTmp in , targeted either to mitochondria or chloroplasts, disturbs the dormant seed state, and it causes the following effects: earlier germination, decreased ABA sensitivity, faster seedling growth, and earlier flowering.
View Article and Find Full Text PDFVavilovskii Zhurnal Genet Selektsii
December 2023
The phenomenon of DNA import into mitochondria has been shown for all major groups of eukaryotes. In plants and animals, DNA import seems to occur in different ways. It has been known that nucleic acids enter plant organelles through alternative channels, depending on the size of the imported molecules.
View Article and Find Full Text PDFGenetic transformation of higher eukaryote mitochondria in vivo is an unresolved and important problem. For efficient expression of foreign genetic material in mitochondria, it is necessary to select regulatory elements that provide a high level of transcription and transcript stability. This work is aimed at studying the effectiveness of regulatory elements of mitochondrial genes flanking exogenous DNA using the phenomenon of natural competence of plant mitochondria.
View Article and Find Full Text PDFThe mitochondrial population is heterogeneous in eukaryotic cells. The heterogeneity of mitochondria can be defined as a variation in certain characteristics of mitochondria within the same or different cells. Differences between mitochondria are possible to classify as nongenetic (structural, morphological, and bioenergetic features) or genetic (differences in mtDNA copy number or sequence).
View Article and Find Full Text PDFMitochondria possess transport mechanisms for import of RNA and DNA. Based on import into isolated Solanum tuberosum mitochondria in the presence of competitors, inhibitors or effectors, we show that DNA fragments of different size classes are taken up into plant organelles through distinct channels. Alternative channels can also be activated according to the amount of DNA substrate of a given size class.
View Article and Find Full Text PDFNatural competence of mitochondria for DNA uptake has been known for the last 20 years. Until the present time, all studies of this process have been conducted exclusively in isolated mitochondria, as no system for investigation of the DNA transport into the mitochondria in intact cells has been available. The objective of this work was to improve and standardize the existing approaches for investigating DNA import into plant mitochondria in an in organello system.
View Article and Find Full Text PDFIn recent decades, it has become evident that the condition for normal functioning of mitochondria in higher eukaryotes is the presence of membrane transport systems of macromolecules (proteins and nucleic acids). Natural competence of the mitochondria in plants, animals, and yeasts to actively uptake DNA may be directly related to horizontal gene transfer into these organelles occurring at much higher rate compared to the nuclear and chloroplast genomes. However, in contrast with import of proteins and tRNAs, little is known about the biological role and molecular mechanism underlying import of DNA into eukaryotic mitochondria.
View Article and Find Full Text PDFIn a number of dicotyledonous plants, including Arabidopsis, the transcription of organellar genes is performed by three nuclear-encoded RNA polymerases, RPOTm, RPOTmp, and RPOTp. RPOTmp is a protein with a dual targeting, which is presumably involved in the control of gene expression in both mitochondria and chloroplasts. A previous study of the Arabidopsis insertion rpotmp mutant showed that it has retarded growth and development, altered leaf morphology, changed expression of mitochondrial and probably some chloroplast genes, and decreased activities of the mitochondrial respiratory complexes.
View Article and Find Full Text PDFMitochondria have retained indispensable but limited genetic information and they import both proteins and nucleic acids from the cytosol. RNA import is essential for gene expression and regulation, whereas competence for DNA uptake is likely to contribute to organellar genome dynamics and evolution. Contrary to protein import mechanisms, the way nucleic acids cross the mitochondrial membranes remains poorly understood.
View Article and Find Full Text PDFPolymerase α is an essential enzyme mainly mediating Okazaki fragment synthesis during lagging strand replication. A specific point mutation in Schizosaccharomyces pombe polymerase α named swi7-1, abolishes imprinting required for mating-type switching. Here we investigate whether this mutation confers any genome-wide defects.
View Article and Find Full Text PDFPurpose: Mitochondria are competent for DNA uptake in vitro, a mechanism which may support delivery of therapeutic DNA to complement organelle DNA mutations. We document here key aspects of the DNA import process, so as to further lay the ground for mitochondrial transfection in intact cells.
Methods: We developed DNA import assays with isolated mitochondria from different organisms, using DNA substrates of various sequences and sizes.
Nucleic Acids Res
September 2011
Investigation and manipulation of mitochondrial genetics in animal and plant cells remains restricted by the lack of an efficient in vivo transformation methodology. Mitochondrial transfection in whole cells and maintenance of the transfected DNA are main issues on this track. We showed earlier that isolated mitochondria from different organisms can import DNA.
View Article and Find Full Text PDFBi-directionality is a common feature observed for genomic replication for all three phylogenetic kingdoms: Eubacteria, Archaea, and Eukaryotes. A consequence of bi-directional replication, where the two replication forks initiated at an origin move away from each other, is that the replication termination will occur at positions away from the origin sequence(s). The replication termination processes are therefore physically and mechanistically dissociated from the replication initiation.
View Article and Find Full Text PDFRespiration, a fundamental process in mammalian cells, requires two genomes, those of the nucleus and the mitochondrion (mtDNA). Mutations of mtDNA are being increasingly recognized in disease and may play an important role in the ageing process. Accepting the vital role of mtDNA gene products, our limited knowledge concerning the details of mitochondrial gene expression is surprising.
View Article and Find Full Text PDFPlant mitochondria are remarkable with respect to their content in foreign, alien and plasmid-like DNA, raising the question of the transfer of this information into the organelles. We demonstrate the existence of an active, transmembrane potential-dependent mechanism of DNA uptake into plant mitochondria. The process is restricted to double-strand DNA, but has no obvious sequence specificity.
View Article and Find Full Text PDF