Publications by authors named "Kouichiro Goto"

T cell exhaustion has been associated with poor prognosis in persistent viral infection and cancer. Conversely, in the context of autoimmunity, T cell exhaustion has been favorably correlated with long-term clinical outcome. Understanding the development of exhaustion in autoimmune settings may provide underlying principles that can be exploited to quell autoreactive T cells.

View Article and Find Full Text PDF

Understanding the molecular mechanisms that drive adipogenesis is important in developing new treatments for obesity and diabetes. Epigenetic regulations determine the capacity of adipogenesis. In this study, we examined the role of a histone H3 lysine 27 demethylase, the ubiquitously transcribed tetratricopeptide repeat protein on the X chromosome (Utx), in the differentiation of mouse embryonic stem cells (mESCs) to adipocytes.

View Article and Find Full Text PDF

Transforming growth factor-β (TGF-β) signaling is controlled by a variety of regulators, of which Smad7, c-Ski, and SnoN play a pivotal role in its negative regulation. Arkadia is a RING-type E3 ubiquitin ligase that targets these negative regulators for degradation to enhance TGF-β signaling. In the present study we identified a candidate human tumor suppressor gene product RB1CC1/FIP200 as a novel positive regulator of TGF-β signaling that functions as a substrate-selective cofactor of Arkadia.

View Article and Find Full Text PDF

Estrogen is a key regulator of normal function of female reproductive system and plays a pivotal role in the development and progression of breast cancer. Here, we demonstrate that JMJD2B (also known as KDM4B) constitutes a key component of the estrogen signaling pathway. JMJD2B is expressed in a high proportion of human breast tumors, and that expression levels significantly correlate with estrogen receptor (ER) positivity.

View Article and Find Full Text PDF

Ubiquitin-dependent protein degradation is involved in various biological processes, and accumulating evidence suggests that E3 ubiquitin ligases play important roles in cancer development. Smad ubiquitin regulatory factor 1 (Smurf1) and Smurf2 are E3 ubiquitin ligases, which suppress transforming growth factor-beta (TGF-beta) family signaling through degradation of Smads and receptors for TGF-beta and bone morphogenetic proteins. In addition, Smurf1 has been reported to promote RhoA ubiquitination and degradation and regulate cell motility, suggesting the involvement of Smurf1 in cancer progression.

View Article and Find Full Text PDF

The inhibitory Smads, Smad6 and Smad7, play pivotal roles in negative regulation of transforming growth factor-beta (TGF-beta) family signaling as feedback molecules as well as mediators of cross-talk with other signaling pathways. Whereas Smad7 acts as a ubiquitous inhibitor of Smad signaling, Smad6 has been shown to effectively inhibit bone morphogenetic protein (BMP) signaling but only weakly TGF-beta/activin signaling. In the present study, we have found that Smad6 inhibits signaling from the activin receptor-like kinase (ALK)-3/6 subgroup in preference to that from the ALK-1/2 subgroup of BMP type I receptors.

View Article and Find Full Text PDF

c-Ski, originally identified as an oncogene product, induces myogenic differentiation in nonmyogenic fibroblasts through transcriptional activation of muscle regulatory factors. Although c-Ski does not bind to DNA directly, it binds to DNA through interaction with Smad proteins and regulates signaling activities of transforming growth factor-beta (TGF-beta). In the present study, we show that c-Ski activates the myogenin promoter independently of regulation of endogenous TGF-beta signaling.

View Article and Find Full Text PDF

Transforming growth factor (TGF)-beta signaling has been shown to promote tumor growth and metastasis in advanced cancer. Use of inhibitors of TGF-beta signaling may thus be a novel strategy for treatment of patients with such cancers. In this study, we investigated the effects of a novel TGF-beta type I receptor (TbetaR-I) kinase inhibitor, Ki26894, on bone metastasis of a highly bone-metastatic variant of human breast cancer MDA-MB-231 cells, termed MDA-MB-231-5a-D (MDA-231-D).

View Article and Find Full Text PDF

c-Ski is a proto-oncogene product that induces morphologic transformation, anchorage independence, and myogenic differentiation when it is over-expressed in mesenchymal cells. c-Ski also inhibits signaling of transforming growth factor-beta (TGF-beta) superfamily members through interaction with Smad proteins. Although c-Ski is predominantly localized in the nucleus, aberrant cytoplasmic localization of it has also been reported in some tumor tissues and cell lines.

View Article and Find Full Text PDF

c-Met is a high-affinity receptor for hepatocyte growth factor (HGF) and plays a crucial role in embryonic development, as well as in the process of tissue repair. Overexpression and amplification of c-Met are often observed in various cancer tissues, especially in gastric carcinoma. It has, however, been unclear whether the overexpression leads to activation of the c-Met receptor.

View Article and Find Full Text PDF

Inhibitory Smad, Smad7, is a potent inhibitor of TGF-beta (transforming growth factor-beta) superfamily signalling. By binding to activated type I receptors, it prevents the activation of R-Smads (receptor-regulated Smads). To identify new components of the Smad pathway, we performed yeast two-hybrid screening using Smad7 as bait, and identified NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) as a direct binding partner of Smad7.

View Article and Find Full Text PDF

Arkadia was originally identified as a protein that enhances signalling activity of Nodal and induces mammalian nodes during early embryogenesis; however, the mechanisms by which Arkadia affects transforming growth factor-beta (TGF-beta) superfamily signalling have not been determined. Here we show that Arkadia is widely expressed in mammalian tissues, and that it enhances both TGF-beta and bone morphogenetic protein (BMP) signalling. Arkadia physically interacts with inhibitory Smad, Smad7, and induces its poly-ubiquitination and degradation.

View Article and Find Full Text PDF

Smad ubiquitin regulatory factor 1 (Smurf1), a HECT type E3 ubiquitin ligase, interacts with inhibitory Smad7 and induces translocation of Smad7 to the cytoplasm. Smurf1 then associates with the transforming growth factor (TGF)-beta type I receptor, TbetaR-I, enhancing turnover. However, the mechanism of nuclear export of Smad7 by Smurf1 has not been elucidated.

View Article and Find Full Text PDF