Publications by authors named "Kouhei Asano"

B-cell lymphoma 6 (BCL6) is a transcriptional repressor that can form complexes with corepressors via protein-protein interactions (PPIs). The complexes of BCL6 and corepressors play an important role in the formation of germinal centers (GCs), and differentiation and proliferation of lymphocytes. Therefore, BCL6-corepressor interaction inhibitors would be drug candidates for managing autoimmune diseases and cancer.

View Article and Find Full Text PDF

B cell lymphoma 6 (BCL6) is a transcriptional repressor that interacts with its corepressors BcoR and SMRT. Since this protein-protein interaction (PPI) induces activation and differentiation of B lymphocytes, BCL6 has been an attractive drug target for potential autoimmune disease treatments. Here we report a novel BCL6 inhibitory peptide, F1324 (Ac-LWYTDIRMSWRVP-OH), which we discovered using phage display technology; we also discuss this peptide's structure-activity relationship (SAR).

View Article and Find Full Text PDF

In the course of our study on selective nonsteroidal mineralocorticoid receptor (MR) antagonists, a series of novel benzoxazine derivatives possessing an azole ring as the core scaffold was designed for the purpose of attenuating the partial agonistic activity of the previously reported dihydropyrrol-2-one derivatives. Screening of alternative azole rings identified 1,3-dimethyl pyrazole 6a as a lead compound with reduced partial agonistic activity. Subsequent replacement of the 1-methyl group of the pyrazole ring with larger lipophilic side chains or polar side chains targeting Arg817 and Gln776 increased MR binding activity while maintaining the agonistic response at the lower level.

View Article and Find Full Text PDF

Dihydrofuran-2-one and dihydropyrrol-2-one derivatives were identified as novel, potent and selective mineralocorticoid receptor (MR) antagonists by the structure-based drug design approach utilizing the crystal structure of MR/compound complex. Introduction of lipophilic substituents directed toward the unfilled spaces of the MR and identification of a new scaffold, dihydropyrrol-2-one ring, led to potent in vitro activity. Among the synthesized compounds, dihydropyrrol-2-one 11i showed an excellent in vitro activity (MR binding IC50=43nM) and high selectivity over closely related steroid receptors such as the androgen receptor (AR), progesterone receptor (PR) and glucocorticoid receptor (GR) (>200-fold for AR and PR, 100-fold for GR).

View Article and Find Full Text PDF

Coenzyme A (CoA):diacylglycerol acyltransferase 1 (DGAT1) is 1 of the 2 known DGAT enzymes that catalyze the final and only committed step in triacylglycerol synthesis; this enzyme is considered to be a potential therapeutic target in metabolic disorders such as obesity and its related lipid abnormalities. Compound-Z, a novel specific small-molecule DGAT1 inhibitor, significantly reduced adipose tissue weight and tended to hepatic lipid accumulation in genetically obese KKAy mice. These actions were shown to almost the same extent in both a high-fat feeding condition in which triacylglycerols are synthesized mainly via exogenous fatty acid and a low-fat, high-carbohydrate feeding condition in which triacylglycerols are synthesized mainly via de novo fatty acid synthesis.

View Article and Find Full Text PDF

In a program to discover new small molecule diacylglycerol acyltransferase (DGAT)-1 inhibitors, screening of our in-house chemical library was carried out using recombinant human DGAT-1 enzyme. From this library, the lead compound 1a was identified as a new class of DGAT-1 inhibitor. A series of novel N-(substituted heteroaryl)-4-(substituted phenyl)-4-oxobutanamides 2 was designed from 1a, synthesized and evaluated for inhibitory activity against DGAT-1 enzyme.

View Article and Find Full Text PDF