Publications by authors named "Kouadio Jean Eric-Parfait Kouame"

In this study, fresh cheeses produced with four novel probiotics (Lactobacillus casei PB-LC39, Lactobacillus rhamnosus PB-LR76, Lactobacillus helveticus HH-LH17, and Lactobacillus plantarum HH-LP56) were named as LC, LR, LH, and LP, respectively. SPME-GC-MS and untargeted metabolomics were used to compare and analyze the flavor quality, metabolites and metabolic pathways of LC, LR, LH and LP, and the potential function of differential metabolites was emphasized. The results demonstrated that the incorporation of probiotics resulted in a significant increase in the number of volatile flavor compounds and varying flavor profiles within the cheese.

View Article and Find Full Text PDF

Brewer's Spent Grain (BSG) is a by-product of the brewing industry, rich in dietary fibers that offer various health benefits. This review delves into the molecular and structural transformations of BSG and dietary fibers (arabinoxylan, beta-glucan, cellulose etc.) extracted from BSG, triggered by recent advancements in extraction technologies.

View Article and Find Full Text PDF

Phospholipids from different sources have varying chemical compositions, but how they contribute to different properties of infant formula is unclear. In this study, four types of phospholipids, milk phospholipids (MPLs), soybean phospholipids (SBPLs), sunflower phospholipids (SFPLs), and egg yolk phospholipids (EYPLs), were added to infant formula to investigate their physicochemical properties, microstructure, and surface characteristics. MPLs uniquely offer high sphingomyelin and saturated fatty acid levels.

View Article and Find Full Text PDF

Monosaccharide composition and glycosidic linkages analysis are essential for the structural characterization and biological activity research of polysaccharides. To simplify the analysis steps and improve detection efficiency, this study developed monosaccharide compositions and glycosidic linkages detection methods based on UPLC-QqQ-MS/MS, and established a plant polysaccharide glycosidic linkages library. Furthermore, the detailed analysis process of monosaccharide compositions and glycosidic linkages was presented through a plant polysaccharide (Chinese bayberry wine polysaccharide, CPW) example.

View Article and Find Full Text PDF
Article Synopsis
  • This study developed human milk fat substitutes (HMFS) using fractionated palm stearin, oleic acid, and linoleic acid, enhancing them with enzymatic acidolysis and blending.
  • The resulting HMFS contained higher levels of key components (OPO, OPL, and sn-2 palmitic acid) compared to commercial alternatives and matched the fat composition of human milk fat (HMF).
  • Additionally, infant formula (IF) made with HMFS showed better fat utilization metrics, being 9% more effective than commercial plant oil-based formulas, while releasing fewer saturated free fatty acids during digestion.
View Article and Find Full Text PDF

Starting from the consideration of the structure of human milk fat globule (MFG), this study aimed to investigate the effects of ultrasonic treatment on milk fat globule membrane (MFGM) and soy lecithin (SL) complexes and their role in mimicking human MFG emulsions. Ultrasonic power significantly affected the structure of the MFGM-SL complex, further promoting the unfolding of the molecular structure of the protein, and then increased solubility and surface hydrophobicity. Furthermore, the microstructure of mimicking MFG emulsions without sonication was unevenly distributed, and the average droplet diameter was large.

View Article and Find Full Text PDF

We hypothesized that the addition of milk fat globule membranes (MFGMs) to infant formula would improve its lipolysis, making it more similar to human milk (HM) and superior to commercial infant formula (CIF) in fat digestion. Therefore, we prepared two model infant formulas (MIFs) by adding MFGMs to dairy ingredients in different ways and compared their fat digestion behavior with those of HM and CIF. MFGMs were added alone (MIF1) and with other milk-based materials (MIF2) before homogenization.

View Article and Find Full Text PDF

Ultrasonic technology is a non-isothermal processing technology that can be used to modify the physicochemical properties of food ingredients. This study investigated the effects of ultrasonic time (5 min, 10 min, 15 min) and power (150 W,300 W,500 W) on the structural properties of three types of phospholipids composed of different fatty acids (milk fat globule membrane phospholipid (MPL), egg yolk lecithin (EYL), soybean lecithin (SL)) and milk fat globule membrane protein (MFGMP). We found that the ultrasound treatment changed the conformation of the protein, and the emulsions prepared by the pretreatment showed better emulsification and stability, the lipid droplets were also more evenly distributed.

View Article and Find Full Text PDF

Differences in the composition and structure of lipid droplets in infant formula (IF) and human milk (HM) can affect the fat digestion of infants, leading to high risk of metabolic diseases during later stages of growth. Recently, interest in simulating HM fat (HMF) has gradually increased due to its beneficial functions for infants. Much research focuses on the simulation of fatty acids and triacylglycerols.

View Article and Find Full Text PDF

The recent trend in infectious diseases and chronic disorders has dramatically increased consumers' interest in functional foods. As a result, the research of bioactive ingredients with potential for nutraceutical and food application has rapidly become a topic of interest. In this optic, the plant Momordica charantia (M.

View Article and Find Full Text PDF

The formulation of probiotics-enriched products still remains a challenge for the food industry due to the loss of viability, mainly occurring upon consumption and during storage. To tackle this challenge, the current study investigated the potential of using sodium alginate and inulin (SIN) in combination with various encapsulating materials such as skim milk (SKIM), whey protein concentrate (WPC), soy protein concentrate (SPC), and flaxseed oil (FS) to increase the viability of Lactobacillus casei upon freeze-drying, under simulated gastrointestinal conditions, during 28 days of storage at 4°C, and in a formulation of millet yogurt. Microstructural properties of microcapsules and co-microcapsules by SEM, oxidative stability of flaxseed oil in co-microcapsules, and physicochemical and sensory analysis of the product were performed.

View Article and Find Full Text PDF
Article Synopsis
  • A polysaccharide (MP1) isolated from Momordica charantia was studied for its functional properties when combined with Whey Protein Isolate (WPI).
  • The combination of MP1 and WPI (MP-WPIs) demonstrated significantly improved water holding capacity, emulsifying properties, and thermal stability compared to WPI alone.
  • MP-WPIs also enhanced the survival and stability of the probiotic Lactobacillus acidophilus, indicating their potential as a prebiotic and effectiveness in addressing metabolic syndrome.
View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to analyze how different ultrasonic treatment times affect the properties of milk fat globule membrane (MPL) and milk protein concentrate (MPC), focusing on particle size, structure, and solubility.
  • Results showed that ultrasonic treatment reduces particle size and improves protein solubility but does not significantly affect molecular weight.
  • It was determined that optimal ultrasonic treatment times for enhancing the properties of MPL and MPC emulsions were 3 minutes and 6 minutes, respectively, with MPL demonstrating better emulsifying stability, making it more suitable for simulating human fat in infant formula.
View Article and Find Full Text PDF