Background: The pathophysiology of COVID-19 remains poorly understood. We aimed to estimate the contribution of intrapulmonary shunting and ventilation-to-perfusion (VA/Q) mismatch using a mathematical model to construct oxygen-haemoglobin dissociation curves (ODCs).
Methods: ODCs were constructed using transcutaneous pulse oximetry at two different fractions of inspired oxygen (FiO2).
Human factors and a safe operating theatre environment are of paramount importance, wherever surgery is undertaken. The majority of patients in sub-Saharan Africa do not yet have access to safe surgery. The Paediatric ENT Skills and Airway Course introduced and evaluated here was designed to improve outcomes and safety in a typical East African environment.
View Article and Find Full Text PDFJ Otolaryngol Head Neck Surg
December 2020
Background: Pharyngeal arch anomalies are the second most common form of head and neck congenital defect. The second arch anomalies are the most common, and compromise 95% of cases. Little is known about the 3rd and 4th arch anomalies as they are extremely rare.
View Article and Find Full Text PDFThe Himalayan Sherpas, a human population of Tibetan descent, are highly adapted to life in the hypobaric hypoxia of high altitude. Mechanisms involving enhanced tissue oxygen delivery in comparison to Lowlander populations have been postulated to play a role in such adaptation. Whether differences in tissue oxygen utilization (i.
View Article and Find Full Text PDFBackground: Insulin sensitivity in skeletal muscle is associated with metabolic flexibility, including a high capacity to increase fatty acid (FA) oxidation in response to increased lipid supply. Lipid overload, however, can result in incomplete FA oxidation and accumulation of potentially harmful intermediates where mitochondrial tricarboxylic acid cycle capacity cannot keep pace with rates of β-oxidation. Enhancement of muscle FA oxidation in combination with mitochondrial biogenesis is therefore emerging as a strategy to treat metabolic disease.
View Article and Find Full Text PDFInorganic nitrate was once considered an oxidation end product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach, we mechanistically defined that nitrate not only increases the expression of thermogenic genes in brown adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2013
Exposure to hypobaric hypoxia is sufficient to decrease cardiac PCr/ATP and alters skeletal muscle energetics in humans. Cellular mechanisms underlying the different metabolic responses of these tissues and the time-dependent nature of these changes are currently unknown, but altered substrate utilization and mitochondrial function may be a contributory factor. We therefore sought to investigate the effects of acute (1 day) and more sustained (7 days) hypoxia (13% O₂) on the transcription factor peroxisome proliferator-activated receptor α (PPARα) and its targets in mouse cardiac and skeletal muscle.
View Article and Find Full Text PDF