Recent developments in quantum computing are highly promising, particularly in the realm of quantum chemistry. Due to the noisy nature of currently available quantum hardware, hybrid quantum-classical algorithms have emerged as a reliable option for near-term simulations. Mixed quantum-classical dynamics methods effectively capture nonadiabatic effects by integrating classical nuclear dynamics with quantum chemical computations of the electronic properties.
View Article and Find Full Text PDFQuantum computers are expected to outperform classical computers for specific problems in quantum chemistry. Such calculations remain expensive, but costs can be lowered through the partition of the molecular system. In the present study, partition was achieved with range-separated density functional theory (RS-DFT).
View Article and Find Full Text PDFEfficient ways to prepare Fermionic ground states on quantum computers are in high demand, and different techniques have been developed over the past few years. Despite having a vast set of methods, it is still unclear which method performs well for which system. In this work, we combine interpretable circuit designs with an effective basis approach in order to optimize a multiconfigurational valence bond wave function.
View Article and Find Full Text PDFCurrent quantum computing hardware is restricted by the availability of only few, noisy qubits which limits the investigation of larger, more complex molecules in quantum chemistry calculations on quantum computers in the near term. In this work, we investigate the limits of their classical and near-classical treatment while staying within the framework of quantum circuits and the variational quantum eigensolver. To this end, we consider naive and physically motivated, classically efficient product ansatz for the parametrized wavefunction adapting the separable-pair ansatz form.
View Article and Find Full Text PDFConcerns have long been raised about the welfare of ballan wrasse (Labrus bergylta) used for the biological control of sea lice in Atlantic salmon (Salmo salar) aquaculture. This study assessed the effect of increased dietary eicosapentaenoic acid (EPA) levels and initial condition factor (CF) on the subsequent performance and welfare of ballan wrasse farmed in high and low water temperatures. Fish were fed a diet with either commercial or high EPA levels for 3 months at 15°C.
View Article and Find Full Text PDFWe provide an integration of the universal, perturbative explicitly correlated [2]-correction in the context of the Variational Quantum Eigensolver (VQE). This approach is able to increase the accuracy of the underlying reference method significantly while requiring no additional quantum resources. The proposed approach only requires knowledge of the one- and two-particle reduced density matrices (RDMs) of the reference wavefunction; these can be measured after having reached convergence in the VQE.
View Article and Find Full Text PDFWe present a review of the Unitary Coupled Cluster (UCC) ansatz and related ansätze which are used to variationally solve the electronic structure problem on quantum computers. A brief history of coupled cluster (CC) methods is provided, followed by a broad discussion of the formulation of CC theory. This includes touching on the merits and difficulties of the method and several variants, UCC among them, in the classical context, to motivate their applications on quantum computers.
View Article and Find Full Text PDFHormones and mRNA transcripts of maternal origin deposited in the egg may affect early embryonic development in oviparous species. These hormones include steroids, such as estradiol-17β (E2), testosterone (T), 11-ketotestosterone (11-kt), 17α,20ß-dihydroxy-4-pregnen-3-one (DHP), and cortisol, which also play an important role in fish reproduction. In European eel, Anguilla anguilla, which does not reproduce naturally in captivity, vitellogenesis in female broodstock is commonly induced by administration of salmon or carp pituitary extract (PE) as an exogenous source of gonadotropins, while follicular maturation is stimulated by a priming dose of PE followed by provision of DHP as a maturation inducing hormone.
View Article and Find Full Text PDFWe develop computationally affordable and encoding independent gradient evaluation procedures for unitary coupled-cluster type operators, applicable on quantum computers. We show that, within our framework, the gradient of an expectation value with respect to a parameterized -fold fermionic excitation can be evaluated by four expectation values of similar form and size, whereas most standard approaches, based on the direct application of the parameter-shift-rule, come with an associated cost of expectation values. For real wavefunctions, this cost can be further reduced to two expectation values.
View Article and Find Full Text PDFWe present a basis-set-free approach to the variational quantum eigensolver using an adaptive representation of the spatial part of molecular wave functions. Our approach directly determines system-specific representations of qubit Hamiltonians while fully omitting globally defined basis sets. In this work, we use directly determined pair-natural orbitals on the level of second-order perturbation theory.
View Article and Find Full Text PDFLow egg quality and embryonic survival are critical challenges in aquaculture, where assisted reproduction procedures and other factors may impact egg quality. This includes European eel (Anguilla anguilla), where pituitary extract from carp (CPE) or salmon (SPE) is applied to override a dopaminergic inhibition of the neuroendocrine system, preventing gonadotropin secretion and gonadal development. The present study used either CPE or SPE to induce vitellogenesis in female European eel and compared impacts on egg quality and offspring developmental competence with emphasis on the maternal-to-zygotic transition (MZT).
View Article and Find Full Text PDFAn efficient representation of molecular correlated wave functions is proposed, which features regularization of the Coulomb electron-electron singularities via the F12-style explicit correlation and a pair-natural orbital factorization of the correlation components of the wave function expressed in the real space. The pair-natural orbitals are expressed in an adaptive multiresolution basis and computed directly by iterative variational optimization. The approach is demonstrated by computing the second-order Moller-Plesset energies of small- and medium-sized molecules.
View Article and Find Full Text PDFEstablishment of European eel (Anguilla anguilla) hatchery production will rely on selectively bred individuals that produce progeny with the best traits in successive generations. As such, this study used a quantitative genetic breeding design, between four females and nine males (four wild-caught and five cultured), to investigate the effect of paternal origin (wild-caught vs. cultured) and quantify the relative importance of parental effects, including genetic compatibility, on early life history (ELH) performance traits (i.
View Article and Find Full Text PDFJ Chem Theory Comput
December 2017
A framework to calculate CC2 approximated coupled-cluster ground state correlation energies in a multiresolution basis is derived and implemented into the MADNESS library. The CC2 working equations are formulated in first quantization which makes them suitable for real-space methods. The first quantized equations can be interpreted diagrammatically using the usual diagrams from second quantization with adjusted interpretation rules.
View Article and Find Full Text PDFJ Chem Theory Comput
December 2017
We report a first quantized approach to calculate approximate coupled-cluster singles and doubles CC2 excitation energies in real space. The cluster functions are directly represented on an adaptive grid using multiresolution analysis. Virtual orbitals are neither calculated nor needed in this approach.
View Article and Find Full Text PDFDiabetes mellitus is a widespread metabolic disease without cure. Great efforts are being made to develop a non-invasive monitoring of the blood glucose level. Various attempts have been made, including a number of non-optical approaches as well as optical techniques involving visible, near- and mid-infrared light.
View Article and Find Full Text PDFIn the present work, we report an efficient implementation of configuration interaction singles (CIS) excitation energies and oscillator strengths using the multi-resolution analysis (MRA) framework to address the basis-set convergence of excited state computations. In MRA (ground-state) orbitals, excited states are constructed adaptively guaranteeing an overall precision. Thus not only valence but also, in particular, low-lying Rydberg states can be computed with consistent quality at the basis set limit a priori, or without special treatments, which is demonstrated using a small test set of organic molecules, basis sets, and states.
View Article and Find Full Text PDFSensors (Basel)
January 2013
Biomedical devices employed in therapy, diagnostics and for self-monitoring often require a high degree of flexibility and compactness. Many near infrared (NIR) optical fiber-coupled systems meet these requirements and are employed on a daily basis. However, mid-infrared (MIR) fibers-based systems have not yet found their way to routine application in medicine.
View Article and Find Full Text PDFNo reliable non-invasive glucose monitoring devices are currently available. We implemented a mid-infrared (MIR) photoacoustic (PA) setup to track glucose in vitro in deep epidermal layers, which represents a significant step towards non-invasive in vivo glucose measurements using MIR light. An external-cavity quantum-cascade laser (1010-1095 cm(-1)) and a PA cell of only 78 mm(3) volume were employed to monitor glucose in epidermal skin.
View Article and Find Full Text PDFA new photoacoustic (PA) cell design, which is particularly suitable for investigations of liquids, gels, and outgassing samples is presented. The setup is based on a PA cell of only 78.5 mm(3) volume, which is sealed on the sample side with either a 163 μm thick chemical vapor deposition diamond window or a 3.
View Article and Find Full Text PDFWe study the coupling induced by retardation effects when two plasmon-resonant nanoparticles are interacting. This coupling leads to an additional resonance, the strength of which depends on a subtle balance between particle separation and size. The scattering cross section and the near field associated with this coupled resonance are studied for cylindrical particles in air and in water.
View Article and Find Full Text PDFWe investigate the plasmon resonances of interacting silver nanowires with a 50 nm diameter. Both non-touching and intersecting configurations are investigated. While individual cylinders exhibit a single plasmon resonance, we observe much more complex spectra of resonances for interacting structures.
View Article and Find Full Text PDFWe study numerically two-dimensional nanoparticles with a non-regular shape and demonstrate that these particles can support many more plasmon resonances than a particle with a regular shape (e.g. an ellipse).
View Article and Find Full Text PDFWe study the plasmon resonances of 10 (nm)--100 (nm) two-dimensional metal particles with a non-regular shape. Movies illustrate the spectral response of such particles in the optical range. Contrary to particles with a simple shape (cylinder, ellipse) non-regular particles exhibit many distinct resonances over a large spectral range.
View Article and Find Full Text PDFA new method for the selective removal of traces of molybdenum from growth media of N2-fixing bacteria (Rhodobacter capsulatus and Klebsiella pneumoniae) was developed. This method is based on the filtration of nutrient solutions through a layer of activated carbon (pulverized charcoal). The adsorption of Mo (molybdate) to activated carbon was optimal if a charcoal suspension (50 g/liter) was degassed by boiling before use and if the pH of the solutions, which had to be purified, was adjusted to values between 1.
View Article and Find Full Text PDF