Publications by authors named "Kotha Anilkumar"

Background: Aegle marmelos (Bilva) is being used in Ayurveda for the treatment of several inflammatory disorders. The plant is a member of a fixed dose combination of Dashamoola in Ayurveda. However, the usage of roots/root bark or stems is associated with sustainability concerns.

View Article and Find Full Text PDF

Inflammation is the major causative factor of different diseases such as cardiovascular disease, diabetes, obesity, osteoporosis, rheumatoid arthritis, inflammatory bowel disease, and cancer. Anti-inflammatory drugs are often the first step of treatment in many of these diseases. The present study is aimed at evaluating the anti-inflammatory properties of isoorientin, a selective cyclooxygenase-2 (COX-2) inhibitor isolated from the tubers of , in vitro on mouse macrophage cell line (RAW 264.

View Article and Find Full Text PDF

The ratio of ω-6 to ω-3 polyunsaturated fatty acids (PUFAs) appears to be critical in the regulation of various pathophysiological processes and to maintain cellular homeostasis. While a high proportion of dietary intake of ω-6 PUFAs is associated with various inflammatory disorders, higher intake of ω-3 PUFAs is known to offer protection. It is now well established that beneficial effects of ω-3 PUFAs are mediated in part by their oxygenated metabolites mainly via the lipoxygenase (LOX) and cyclooxygenase (COX) pathways.

View Article and Find Full Text PDF

Selective inhibition of the BCR/ABL tyrosine kinase by imatinib (STI571, Glivec/Gleevec) is the therapeutic strategy in patients with chronic myelogenous leukemia (CML). Despite significant hematologic and cytogenetic responses with imatinib, mainly due to the mutations in the Abl kinase domain, resistance occurs in patients with advanced disease. In the present study on imatinib-resistant K562 cells (IR-K562), however, no such mutations in the Abl kinase domain were observed.

View Article and Find Full Text PDF

Growth inhibitory effects of 15-lipoxygenase-1 [13-(S)-HPODE and 13-(S)-HODE] and 15-lipoxygenase-2 [15-(S)-HPETE and 15-(S)-HETE] (15-LOX-1 and LOX-2) metabolites and the underlying mechanisms were studied on chronic myeloid leukemia cell line (K-562). The hydroperoxy metabolites, 15-(S)-HPETE and 13-(S)-HPODE rapidly inhibited the growth of K-562 cells by 3h with IC(50) values, 10 and 15microM, respectively. In contrast, the hydroxy metabolite of 15-LOX-2, 15-(S)-HETE, showed 50% inhibition only at 40microM by 6h and 13-(S)-HODE, hydroxy metabolite of 15-LOX-1, showed no significant effect up to 160microM.

View Article and Find Full Text PDF