Publications by authors named "Koteswara Rao Valasani"

A series of 3-amino-2-hydroxybenzofused 2-phosphalactones () has been synthesized from the Kabachnik-Fields reaction a facile route from a one-pot three-component reaction of diphenylphosphite with various 2-hydroxybenzaldehyes and heterocyclic amines in a new way of expansion. The anti-cell proliferation studies by MTT assay have revealed them as potential Panc-1, Miapaca-2, and BxPC-3 pancreatic cell growth inhibitors, and the same is supported by molecular docking, QSAR, and ADMET studies. The MTT assay of their SAHA derivatives against the same cell lines evidenced them as potential HDAC inhibitors and identified , , and substituted with 1,3-thiazol, 1,3,4-thiadiazol, and 5-sulfanyl-1,3,4-thiadiazol moieties on phenyl and diethylamino phenyl rings as potential ones.

View Article and Find Full Text PDF

Cyclophilin D (CypD), a peptidylprolyl isomerase F (PPIase), plays a central role in opening the mitochondrial membrane permeability transition pore leading to cell death. CypD resides in the mitochondrial matrix, associates with the inner mitochondrial membrane, interacts with amyloid beta to exacerbate mitochondrial and neuronal stress and has been linked to Alzheimer's disease (AD). We report the biological activity of a small-molecule CypD inhibitor (C-9), which binds strongly to CypD and attenuates mitochondrial and cellular perturbation insulted by Aβ and calcium stress.

View Article and Find Full Text PDF

Diarrhea is one of the most common adverse side effects observed in ∼7% of individuals consuming Food and Drug Administration (FDA)-approved drugs. The mechanism of how these drugs alter fluid secretion in the gut and induce diarrhea is not clearly understood. Several drugs are either substrates or inhibitors of multidrug resistance protein 4 (MRP4), such as the anti-colon cancer drug irinotecan and an anti-retroviral used to treat HIV infection, 3'-azido-3'-deoxythymidine (AZT).

View Article and Find Full Text PDF

Since inhibitors of mucin onco proteins are potential targets for breast cancer therapy, a series of novel 4-methylthiazole-5-carboxylic acid (1) derivatives 3a-k were synthesized by the reaction of 1 with SOCl2 followed by different bases/alcohols in the presence of triethylamine. Once synthesized and characterized, their binding modes with MUC1 were studied by molecular docking analysis using Aruglab 4.0.

View Article and Find Full Text PDF

Cyclophilin D (CypD) is a key mitochondrial target for amyloid-β-induced mitochondrial and synaptic dysfunction and is considered a potential drug target for Alzheimer's disease. The high-resolution crystal structures of primitive orthorhombic (CypD-o) and primitive tetragonal (CypD-t) forms have been determined to 1.45 and 0.

View Article and Find Full Text PDF

A major obstacle to the development of effective treatment of Alzheimer's disease (AD) is successfully delivery of drugs to the brain. We have previously identified a series of benzothiazole phosphonate compounds that block the interaction of amyloid-β peptide with amyloid-β binding alcohol dehydrogenase (ABAD). A selective and sensitive method for the presence of three new benzothiazole ABAD inhibitors in mouse plasma, brain, and artificial cerebrospinal fluid has been developed and validated based on high performance liquid chromatography tandem mass spectrometry.

View Article and Find Full Text PDF

Mutations in the glucokinase (GK) gene play a critical role in the establishment of type 2 diabetes. In our earlier study, R308K mutation in GK in a clinically proven type 2 diabetic patient showed, structural and functional variations that contributed immensely to the hyperglycemic condition. In the extension of this work, a cohort of 30 patients with established type 2 diabetic condition were chosen and the exons 10 and 11 of GK were PCR-amplified and sequenced.

View Article and Find Full Text PDF

Amyloid-β (Aβ), a neurotoxic peptide, is linked to the onset of Alzheimer's disease (AD). Increased Aβ content within neuronal cell mitochondria is a pathological feature in both human and mouse models with AD. This accumulation of Aβ within the mitochondrial landscape perpetuates increased free radical production and activation of the apoptotic pathway.

View Article and Find Full Text PDF

Cyclophilin D (CypD) is a peptidyl prolyl isomerase F that resides in the mitochondrial matrix and associates with the inner mitochondrial membrane during the mitochondrial membrane permeability transition. CypD plays a central role in opening the mitochondrial membrane permeability transition pore (mPTP) leading to cell death and has been linked to Alzheimer's disease (AD). Because CypD interacts with amyloid beta (Aβ) to exacerbate mitochondrial and neuronal stress, it is a potential target for drugs to treat AD.

View Article and Find Full Text PDF

Glucokinase (GK) plays a critical role in glucose homeostasis and the mutations in GK gene result in pathogenic complications known as Maturity Onset Diabetes of the Young 2, an autosomal dominant form of diabetic condition. In the present study, GK was purified from human liver tissue and the pure enzyme showed single band in SDS-PAGE with a molecular weight of 50 kDa. The kinetics of pure GK showed enzyme activity of 0.

View Article and Find Full Text PDF

Staphylococcus aureus a natural inhabitant of nasopharyngeal tract survives in the host as biofilms. In the present study S. aureus ATCC12600 grown under anaerobic conditions showed biofilm units of 0.

View Article and Find Full Text PDF

Acetylcholinesterase (AChE) is a main drug target, and its inhibitors have demonstrated functionality in the symptomatic treatment of Alzheimer's disease (AD). In this study, a series of novel AChE inhibitors were designed and their inhibitory activity was evaluated with 2D quantitative structure-activity relationship (QSAR) studies using a training set of 20 known compounds for which IC₅₀ values had previously been determined. The QSAR model was calculated based on seven unique descriptors.

View Article and Find Full Text PDF

Glucokinase (GK) is the predominant hexokinase that acts as glucose sensor and catalyses the formation of Glucose-6-phosphate. The mutations in GK gene influence the affinity for glucose and lead to altered glucose levels in blood causing maturity onset diabetes of the young type 2 (MODY2) condition, which is one of the prominent reasons of type 2 diabetic condition. In view of the importance of mutated GK resulting in hyperglycemic condition, in the present study, molecular dynamics simulations were carried out in intact and 256 E-K mutated GK structures and their energy values and conformational variations were correlated.

View Article and Find Full Text PDF