Older adults walk with less push-off power than younger adults. Principally attributed to plantar flexor dysfunction, growing evidence implicates interactions between the foot and ankle as critical for generating effective push-off. Our purposes were to measure age effects on foot-ankle mechanical transmission (FAMT, ie, the ratio between metatarsal phalangeal extension and medial gastrocnemius fascicle length change), and its association with ankle push-off during walking.
View Article and Find Full Text PDFWhen humans walk on slopes, the ankle, knee, and hip joints modulate their mechanical work to accommodate the mechanical demands. Yet, it is unclear if the foot modulates its work output during uphill and downhill walking. Therefore, we quantified the mechanical work performed by the foot and its subsections of twelve adults walked on five randomized slopes (-10°, -5°, 0°, +5°, +10°).
View Article and Find Full Text PDFHuman-in-the-loop optimization algorithms have proven useful in optimizing complex interactive problems, such as the interaction between humans and robotic exoskeletons. Specifically, this methodology has been proven valid for reducing metabolic cost while wearing robotic exoskeletons. However, many prostheses and orthoses still consist of passive elements that require manual adjustments of settings.
View Article and Find Full Text PDFFoot structures define the leverage in which the ankle muscles push off against the ground during locomotion. While prior studies have indicated that inter-individual variation in anthropometry (e.g.
View Article and Find Full Text PDFMuch of our current understanding of age-related declines in mobility has been aided by decades of investigations on the role of muscle-tendon units spanning major lower extremity joints (e.g., hip, knee and ankle) for powering locomotion.
View Article and Find Full Text PDFMost of the terrestrial legged locomotion gaits, like human walking, necessitate energy dissipation upon ground collision. In humans, the heel mostly performs net-negative work during collisions, and it is currently unclear how it dissipates that energy. Based on the laws of thermodynamics, one possibility is that the net-negative collision work may be dissipated as heat.
View Article and Find Full Text PDFStochastic resonance has been successfully used to improve human movement when using subthreshold vibration. Recent work has shown promise in improving mobility in individuals with unilateral lower limb amputations. Furthering this work, we present an investigation of two different signal structures in the use of stochastic resonance to improve mobility in individuals with unilateral lower limb amputations.
View Article and Find Full Text PDFAn exoskeletal device can assist walking in those with gait deficits. A passive exoskeleton can be a favorable choice for local or home rehabilitation settings because it is affordable, light weight, and less complex to utilize. While there is research that investigates the effects of exoskeleton on gait research examining the effects of such devices on gait adaptation, is rare.
View Article and Find Full Text PDFBackground: A shock-absorbing pylon (SAP) is a modular prosthetic component designed to attenuate impact forces, which unlike traditional pylons that are rigid, can compress to absorb, return, or dissipate energy. Previous studies found that walking with a SAP improved lower-limb prosthesis users' comfort and residual limb pain. While longitudinal stiffness of a SAP has been shown to affect gait kinematics, kinetics, and work done by the entire lower limb, the energetic contributions from the prosthesis and the intact joints have not been examined.
View Article and Find Full Text PDFOlder adults exhibit reductions in push-off power that are often attributed to deficits in plantarflexor force-generating capacity. However, growing evidence suggests that the foot may also contribute to push-off power during walking. Thus, age-related changes in foot structure and function may contribute to altered foot mechanics and ultimately reduced push-off power.
View Article and Find Full Text PDFBackground: The human foot typically changes temperature between pre and post-locomotion activities. However, the mechanisms responsible for temperature changes within the foot are currently unclear. Prior studies indicate that shear forces may increase foot temperature during locomotion.
View Article and Find Full Text PDFLower-limb wearable robotic devices can improve clinical gait and reduce energetic demand in healthy populations. To help enable real-world use, we sought to examine how assistance should be applied in variable gait conditions and suggest an approach derived from knowledge of human locomotion mechanics to establish a 'roadmap' for wearable robot design. We characterized the changes in joint mechanics during walking and running across a range of incline/decline grades and then provide an analysis that informs the development of lower-limb exoskeletons capable of operating across a range of mechanical demands.
View Article and Find Full Text PDFThe human foot serves numerous functional roles during walking, including shock absorption and energy return. Here, we investigated walking with added mass to determine how the foot would alter its mechanical work production in response to a greater force demand. Twenty-one healthy young adults walked with varying levels of added body mass: 0%, +15% and +30% (relative to their body mass).
View Article and Find Full Text PDFDuring locomotion, the human ankle-foot system dynamically alters its gearing, or leverage of the ankle joint on the ground. Shifting ankle-foot gearing regulates speed of plantarflexor (i.e.
View Article and Find Full Text PDFMeasuring postural sway is important for determining functional ability or risk of falling. Gathering postural sway measures outside of controlled environments is desirable for reaching populations with limited mobility. Previous studies have confirmed the accuracy of the magnitude of postural sway using the Nintendo Wii Balance Board (WBB).
View Article and Find Full Text PDFBackground: The human ankle joint has an influential role in the regulation of the mechanics and energetics of gait. The human ankle can modulate its joint 'quasi-stiffness' (ratio of plantarflexion moment to dorsiflexion displacement) in response to various locomotor tasks (e.g.
View Article and Find Full Text PDFExamination of how the ankle and midtarsal joints modulate stiffness in response to increased force demand will aid understanding of overall limb function and inform the development of bio-inspired assistive and robotic devices. The purpose of this study is to identify how ankle and midtarsal joint quasi-stiffness are affected by added body mass during over-ground walking. Healthy participants walked barefoot over-ground at 1.
View Article and Find Full Text PDFDuring walking, uneven surfaces impose new demands for controlling balance and forward progression at each step. It is unknown to what extent walking may be refined given an amount of stride-to-stride unpredictability at the distal level. Here, we explored the effects of an uneven terrain surface on whole-body locomotor dynamics immediately following exposure and after a familiarization period.
View Article and Find Full Text PDFAn objective understanding of human foot and ankle function can drive innovations of bio-inspired wearable devices. Specifically, knowledge regarding how mechanical force and work are produced within the human foot-ankle structures can help determine what type of materials or components are required to engineer devices. In this study, we characterized the combined functions of the foot and ankle structures during walking by synthesizing the total force, displacement, and work profiles from structures distal to the shank.
View Article and Find Full Text PDFBackground: Uneven ground is a frequently encountered, yet little-studied challenge for individuals with amputation. The absence of control at the prosthetic ankle to facilitate correction for surface inconsistencies, and diminished sensory input from the extremity, add unpredictability to an already complex control problem, and leave limited means to produce appropriate corrective responses in a timely manner. Whole body angular momentum, L, and its variability across several strides may provide insight into the extent to which an individual can regulate their movement in such a context.
View Article and Find Full Text PDFStride-to-stride fluctuations of joint kinematics during walking reflect a highly structured organization that is characteristic of healthy gait. The organization of stride-to-stride fluctuations is disturbed in lower-limb prosthesis users, yet the factors contributing to this difference are unclear. One potential contributor to the changes in stride-to-stride fluctuations is the altered push-off mechanics experienced by passive prosthesis users.
View Article and Find Full Text PDFMinimizing the metabolic cost of transport can affect selection of the preferred walking speed. While many factors can affect metabolic cost of transport during human walking, its interaction with step-to-step variability is unclear. Here, we aimed to determine the interaction between metabolic cost of transport and step length variability during human walking at different speeds.
View Article and Find Full Text PDFChanges in running strike pattern affect ankle and knee mechanics, but little is known about the influence of strike pattern on the joints distal to the ankle. The purpose of this study was to explore the effects of forefoot strike (FFS) and rearfoot strike (RFS) running patterns on foot kinematics and kinetics, from the perspectives of the midtarsal locking theory and the windlass mechanism. Per the midtarsal locking theory, we hypothesized that the ankle would be more inverted in early stance when using a FFS, resulting in decreased midtarsal joint excursions and increased dynamic stiffness.
View Article and Find Full Text PDFProsthetic feet are designed to store energy during early stance and then release a portion of that energy during late stance. The usefulness of providing more energy return depends on whether or not that energy transfers up the lower limb to aid in whole body propulsion. This research examined how increasing prosthetic foot energy return affected walking mechanics across various slopes.
View Article and Find Full Text PDFBackground: Kinematic multi-segment foot models have been increasingly used to study foot function. The addition of kinetics to these models may enhance their utility; however, this been hindered by limitations in measuring ground reaction forces (GRFs) under individual foot segments.
Purpose: To determine the accuracy of partitioning segment GRFs from a single force platform on foot joint kinetics.