Metal-organic frameworks (MOFs) are promising materials because of their high designability of pores and functionalities. Especially, MOF thin films and their properties have been investigated toward applications in nanodevices. Typically, MOF thin films are fabricated by using a bottom-up method such as layer-by-layer (LbL) growth in air.
View Article and Find Full Text PDFWe report dual-stimuli, thermo- and photostimuli, responsive chiral assemblies, of planar-chiral pillar[5]arenes with azobenzene groups on their rims. The azobenzene-substituted planar-chiral pillar[5]arenes were synthesized by copper(I)-catalyzed alkyne-azide cycloaddition "click" reaction of azide-substituted planar-chiral pillar[5]arenes containing or stereogenic carbon atoms with an alkyne-substituted azobenzene. These decaazides with stereogenic carbons could act as starting points for a large library of planar-chiral pillar[5]arenes.
View Article and Find Full Text PDFNanometer thin films of Nafion ionomer interfaced with platinum form the functional electrodes in many electrochemical devices including fuel cells and electrolyzers. To impart facile proton conduction in a Nafion ionomer, sufficient hydration of the Nafion ionomer is necessary to create a percolating network of water-filled nanometer-sized hydrophilic domains that manifest as macroscopic swelling. This hydration behavior of the ionomer thin films is poorly understood especially for films confined on electrochemically relevant Pt substrates.
View Article and Find Full Text PDF