Publications by authors named "Kota N Gopalakrishna"

Inherited retinal degenerations are a common cause of untreatable blindness worldwide, with retinitis pigmentosa and cone dystrophy affecting approximately 1 in 3500 and 1 in 10,000 individuals, respectively. A major limitation to the development of effective therapies is the lack of availability of animal models that fully replicate the human condition. Particularly for cone disorders, rodent, canine, and feline models with no true macula have substantive limitations.

View Article and Find Full Text PDF

Mutations in PDE6 genes encoding the effector enzymes in rods and cones underlie severe retinal diseases including retinitis pigmentosa (RP), autosomal dominant congenital stationary night blindness (adCSNB), and achromatopsia (ACHM). Here we examined a spectrum of pathogenic missense mutations in PDE6 using the system based on co-expression of cone PDE6C with its specialized chaperone AIPL1 and the regulatory Pγ subunit as a potent co-chaperone. We uncovered two mechanisms of PDE6C mutations underlying ACHM: (a) folding defects leading to expression of catalytically inactive proteins and (b) markedly diminished ability of Pγ to co-chaperone mutant PDE6C proteins thereby dramatically reducing the levels of functional enzyme.

View Article and Find Full Text PDF

Phosphodiesterase 6 (PDE6) is the effector enzyme in the phototransduction cascade and is critical for the health of both rod and cone photoreceptors. Its dysfunction, caused by mutations in either the enzyme itself or AIPL1 (aryl hydrocarbon receptor-interacting protein-like 1), leads to retinal diseases culminating in blindness. Progress in research on PDE6 and AIPL1 has been severely hampered by failure to express functional PDE6 in a heterologous expression system.

View Article and Find Full Text PDF

Uncoordinated 119 protein (UNC119) is a partner of transducin-α subunit (Gαt ) that is essential for transducin trafficking in rod photoreceptors. The interaction is known to involve binding of the acylated N terminus of Gαt to the hydrophobic pocket of UNC119. To gain insights into the mechanism of transducin trafficking, we isolated a highly pure protein complex between myristoylated chimeric Gαt (Gαt *) and UNC119₅₀₋₂₄₀, and examined the solution structure by small angle X-ray scattering and chemical crosslinking.

View Article and Find Full Text PDF

Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is a photoreceptor specific chaperone of the visual effector enzyme phosphodiesterase-6 (PDE6). AIPL1 has been shown to bind the farnesylated PDE6A subunit. Mutations in AIPL1 are thought to destabilize PDE6 and thereby cause Leber congenital amaurosis type 4 (LCA4), a severe form of childhood blindness.

View Article and Find Full Text PDF

The molecular nature of transducin-α subunits (Gα(t)) may contribute to the distinct physiology of cone and rod photoreceptors. Biochemical properties of mammalian cone Gα(t2) subunits and their differences with rod Gα(t1) are largely unknown. Here, we examined properties of chimeric Gα(t2) in comparison with its rod counterpart.

View Article and Find Full Text PDF

The key visual G protein, transducin undergoes bi-directional translocations between the outer segment (OS) and inner compartments of rod photoreceptors in a light-dependent manner thereby contributing to adaptation and neuroprotection of rods. A mammalian uncoordinated 119 protein (UNC119), also known as Retina Gene 4 protein (RG4), has been recently implicated in transducin transport to the OS in the dark through its interaction with the N-acylated GTP-bound transducin-α subunit (Gα(t1)). Here, we demonstrate that the interaction of human UNC119 (HRG4) with transducin is dependent on the N-acylation, but does not require the GTP-bound form of Gα(t1).

View Article and Find Full Text PDF

A recently discovered enzyme in the mandelate pathway of Pseudomonas putida, mandelamide hydrolase (MAH), catalyzes the hydrolysis of mandelamide to mandelic acid and ammonia. Sequence analysis suggests that MAH is a member of the amidase signature family, which is widespread in nature and contains a novel Ser-cis-Ser-Lys catalytic triad. Here we report the expression in Escherichia coli, purification, and characterization of both wild-type and His(6)-tagged MAH.

View Article and Find Full Text PDF

The enzymes of the mandelate metabolic pathway permit Pseudomonas putida ATCC 12633 to utilize either or both enantiomers of mandelate as the sole carbon source. The genes encoding the mandelate pathway were found to lie on a single 10.5-kb restriction fragment.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionth10ib5i4u3kjv91rukujum0k79i4klj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once