Publications by authors named "Kot W"

Background: The gut virome is an integral component of the gut microbiome, playing a crucial role in maintaining gut health. However, accurately depicting the entire gut virome is challenging due to the inherent diversity of genome types (dsDNA, ssDNA, dsRNA, and ssRNA) and topologies (linear, circular, or fragments), with subsequently biases associated with current sequencing library preparation methods. To overcome these problems and improve reproducibility and comparability across studies, universal or standardized virome sequencing library construction methods are highly needed in the gut virome study.

View Article and Find Full Text PDF

The bacterial diseases black leg and soft rot in potatoes cause heavy losses of potatoes worldwide. Bacteria within the genus Pectobacteriaceae are the causative agents of black leg and soft rot. The use of antibiotics in agriculture is heavily regulated and no other effective treatment currently exists, but bacteriophages (phages) have shown promise as potential biocontrol agents.

View Article and Find Full Text PDF

Background: This study aimed to evaluate the incidence of implant failure in patients with oral lichen planus (OLP) and investigate the potential association between OLP and peri-implant diseases.

Materials And Methods: Embase, Web of Science, PubMed, and Scopus databases were searched for studies with no time restrictions. Meta-analysis was performed calculating pooled proportion of peri-implantitis (PI), peri-implant mucositis (PIM), and bleeding on probing (BOP) prevalence using fixed-effects model.

View Article and Find Full Text PDF

Aging has been associated with a changed composition and function of the gut microbiota (GM). Here, we investigate the effects of the multi-strain probiotic HOWARU Restore on GM composition and function in seniors. Ninety-eight healthy adult volunteers aged ≥75 years were enrolled in a randomised, double-blinded intervention (NCT02207140), where they received HOWARU Restore (10 CFU) or the placebo daily for 24 weeks, with 45 volunteers from each group completing the intervention.

View Article and Find Full Text PDF

Background: The objective of this study is to examine the application of artificial intelligence (AI) algorithms in detecting oral potentially malignant disorders (OPMD) and oral cancerous lesions, and to evaluate the accuracy variations among different imaging tools employed in these diagnostic processes.

Materials And Methods: A systematic search was conducted in four databases: Embase, Web of Science, PubMed, and Scopus. The inclusion criteria included studies using machine learning algorithms to provide diagnostic information on specific oral lesions, prospective or retrospective design, and inclusion of OPMD.

View Article and Find Full Text PDF

Introduction: The aim of this systematic review is to provide a clinical update of the current knowledge on COVID-19 and oral mucosal lesions, to analyze the types and prevalence of oral mucosal lesions in patients with COVID-19, and to clarify the potential association between COVID-19 and oral mucosal lesions.

Methods: The literature search was conducted using PubMed, Web of Science, Scopus and the Cochrane Library, as well as literatures via manual searches of the reference lists of included studies. Studies published in English that mentioned oral mucosal lesions in patients with COVID-19 were included, resulting in a total of 31 studies.

View Article and Find Full Text PDF

Plasmids have been a concern in the dissemination and evolution of antibiotic resistance in the environment. In this study, we investigated the total pool of plasmids (plasmidome) and its derived antibiotic resistance genes (ARGs) in different compartments of urban water systems (UWSs) in three European countries representing different antibiotic usage regimes. We applied a direct plasmidome approach using wet-lab methods to enrich circular DNA in the samples, followed by shotgun sequencing and in silico contig circularisation.

View Article and Find Full Text PDF

Environmental bacteria host an enormous number of prophages, but their diversity and natural functions remain largely elusive. Here, we investigate prophage activity and diversity in 63 Erwinia and Pseudomonas strains isolated from flag leaves of wheat grown in a single field. Introducing and validating Virion Induction Profiling Sequencing (VIP-Seq), we identify and quantify the activity of 120 spontaneously induced prophages, discovering that some phyllosphere bacteria produce more than 10 virions/mL in overnight cultures, with significant induction also observed in planta.

View Article and Find Full Text PDF

Background: There is an increasing interest in investigating the human gut virome for its influence on the gut bacterial community and its putative influence on the trajectory towards health or disease. Most gut virome studies are based on sequencing of stored fecal samples. However, relatively little is known about how conventional storage buffers and storage conditions affect the infectivity of bacteriophages and influence the downstream metavirome sequencing.

View Article and Find Full Text PDF

Plant pathogenic Pseudomonas species use multiple classes of toxins and virulence factors during host infection. The genes encoding these pathogenicity factors are often located on plasmids and other mobile genetic elements, suggesting that they are acquired through horizontal gene transfer to confer an evolutionary advantage for successful adaptation to host infection. However, the genetic rearrangements that have led to mobilization of the pathogenicity genes are not fully understood.

View Article and Find Full Text PDF

Deazaguanine DNA modifications are widespread in phages, particularly in those with pathogenic hosts. Pseudomonas phage iggy substitutes ∼16.5% of its genomic 2'-deoxyguanosine (G) with dPreQ0, and the iggy deazaguanine transglycosylase (DpdA) is unique in having a strict GA target motif, not observed previously.

View Article and Find Full Text PDF

Nasogastric feeding tubes (NG-tubes) from neonates contain potentially pathogenic bacteria. Using culture-based techniques, we have previously determined that the usage duration of NG-tubes did not impact the colonization of the nasogastric tubes. In the present study, we performed 16S rRNA gene amplicon sequencing to evaluate the microbial profile of 94 used nasogastric tubes collected from a single neonatal intensive care unit.

View Article and Find Full Text PDF

Despite the ecological significance of viral communities, phages remain insufficiently studied. Current genomic databases lack high-quality phage genome sequences linked to specific bacteria. Bacteria of the genus Erwinia are known to colonize the phyllosphere of plants, both as commensals and as pathogens.

View Article and Find Full Text PDF

Many bacteria and archaea harbor the adaptive CRISPR-Cas system, which stores small nucleotide fragments from previous invasions of nucleic acids via viruses or plasmids. This molecular archive blocks further invaders carrying identical or similar nucleotide sequences. However, few of these systems have been confirmed experimentally to be active in gut bacteria.

View Article and Find Full Text PDF

The complete genome sequences, as determined by a combination of short- and long-read sequencing, of three Lactiplantibacillus plantarum strains (M8, M17, and M19) that were isolated from Iranian motal cheese are reported. The genome sizes were estimated to be 3.3, 3.

View Article and Find Full Text PDF

Background: Gut microbiota dysbiosis is associated with the development of non-alcoholic steatohepatitis (NASH) through modulation of gut barrier, inflammation, lipid metabolism, bile acid signaling and short-chain fatty acid production. The aim of this study was to describe the impact of a choline-deficient amino acid defined high fat diet (CDAHFD) on the gut microbiota in a male Göttingen Minipig model and on selected pathways implicated in the development of NASH.

Results: Eight weeks of CDAHFD resulted in a significantly altered colon microbiota mainly driven by the bacterial families Lachnospiraceae and Enterobacteriaceae, being decreased and increased in relative abundance, respectively.

View Article and Find Full Text PDF

RNA and DNA modifications occur in eukaryotes and prokaryotes, as well as in their viruses, and serve a wide range of functions, from gene regulation to nucleic acid protection. Although the first nucleotide modification was discovered almost 100 years ago, new and unusual modifications are still being described. Nucleotide modifications have also received more attention lately because of their increased significance, but also because new sequencing approaches have eased their detection.

View Article and Find Full Text PDF

Some serovars of Salmonella can cause life-threatening diarrhoeal diseases and bacteriemia. The emergence of multidrug-resistant strains has led to a need for alternative treatments such as phage therapy, which requires available, well-described, diverse, and suitable phages. Phage akira was found to lyse 19 out of 32 Salmonella enterica serovars and farm isolates tested, although plaque formation was observed with only two S.

View Article and Find Full Text PDF

The development of necrotizing enterocolitis (NEC), a life-threatening inflammatory bowel disease affecting preterm infants, is connected with gut microbiota dysbiosis. Using preterm piglets as a model for preterm infants we recently showed that fecal microbiota transplantation (FMT) from healthy suckling piglet donors to newborn preterm piglets decreased the NEC risk. However, in a follow-up study using donor stool from piglets recruited from another farm, this finding could not be replicated.

View Article and Find Full Text PDF

The phyllosphere microbiome plays an important role in plant fitness. Recently, bacteriophages have been shown to play a role in shaping the bacterial community composition of the phyllosphere. However, no studies on the diversity and abundance of phyllosphere bacteriophage communities have been carried out until now.

View Article and Find Full Text PDF

Dietary probiotics may enhance gut health by directly competing with pathogenic agents and through immunostimulatory effects. These properties are recognized in the context of bacterial and viral pathogens, but less is known about interactions with eukaryotic pathogens such as parasitic worms (helminths). In this study we investigated whether two probiotic mixtures (comprised of , and [BBE], or LGG and subspecies Bb12 [LB]) could modulate helminth infection kinetics as well as the gut microbiome and intestinal immune responses in pigs infected with the nodular worm .

View Article and Find Full Text PDF

Sleep disorders have been linked to alterations of gut microbiota composition in adult humans and animal models, but it is unclear how this link develops. With longitudinal assessments in 162 healthy infants, we present a so far unrecognized sleep-brain-gut interrelationship. First, we report a link between sleep habits and gut microbiota: daytime sleep is associated with bacterial diversity, and nighttime sleep fragmentation and variability are linked with bacterial maturity and enterotype.

View Article and Find Full Text PDF

Phytonutrients such as cinnamaldehyde (CA) have been studied for their effects on metabolic diseases, but their influence on mucosal inflammation and immunity to enteric infection are not well documented. Here, we show that consumption of CA in mice significantly down-regulates transcriptional pathways connected to inflammation in the small intestine, and alters T-cell populations in mesenteric lymph nodes. During infection with the enteric helminth Heligomosomoides polygyrus, CA treatment attenuated infection-induced changes in biological pathways connected to cell cycle and mitotic activity, and tended to reduce worm burdens.

View Article and Find Full Text PDF

Background: Fiber-rich feed components possess prebiotic potential to enhance pig health and are considered a potential solution to the high prevalence of post-weaning diarrhea in pig production under the phased suspension of antibiotics and zinc oxide use.

Methods: We screened the gut microbiota modulatory properties of pectin substrates prepared from sugar beet within the freshly weaned piglet gut microbiome using an in vitro colon model, the CoMiniGut. We focused on testing a variety (13) of sugar beet-derived pectin substrates with defined structures, as well as known prebiotics such as inulin, fructooligosaccharide (FOS) and galactooligosaccharide (GOS), to gain insights on the structure-function related properties of specific substrates on the weaner gut microbial composition as well as shortchain fatty acid production (SCFA).

View Article and Find Full Text PDF