Publications by authors named "Kosuke Hitaka"

Matrix metalloproteinase-7 (MMP-7) has been shown to play an important role in pathophysiological processes such as cancer and fibrosis. We previously discovered selective MMP-7 inhibitors by molecular hybridization and structure-based drug design. However, the systemic clearance (CL) of the biologically active lead compound was very high.

View Article and Find Full Text PDF

Matrix metalloproteinase-7 (MMP-7) has been shown to play important roles in pathophysiological processes involved in the development/progression of diseases such as cancer and fibrosis. We discovered selective MMP-7 inhibitors composed of arylsulfonamide, carboxylate, and short peptides by a molecular hybridization approach. These compounds interacted with MMP-7 via multiple hydrogen bonds in the cocrystal structures.

View Article and Find Full Text PDF

Matrix metalloproteinase-2 (MMP2) is a zinc-dependent endopeptidase and a promising target for various diseases, including cancer and fibrosis. Herein, we report the discovery of a novel MMP2-selective inhibitor with high chemical stability and slow tight-binding features. Based on the degradation mechanism of our small-molecule-peptide hybrid , the tripeptide linker {5-aminopentanoic acid [Ape(5)]-Glu-Asp} of was replaced by a shorter linker (γ-D-Glu).

View Article and Find Full Text PDF

Matrix metalloproteinase-7 (MMP-7) has emerged as a protein playing important roles in both physiological and pathophysiological processes. Despite the growing interest in MMP-7 as a potential therapeutic target for diseases including cancer and fibrosis, potent and selective MMP-7 inhibitors have yet to be identified. Compound , previously reported by Edman and co-workers, binds to the S1' subsite of MMP-7, exhibiting moderate inhibitory activity and selectivity.

View Article and Find Full Text PDF

Matrix metalloproteinase-2 (MMP2) is a zinc-dependent endopeptidase that plays important roles in the degradation of extracellular matrix proteins. MMP2 is considered to be an attractive target for the treatment of various diseases such as cancer, arthritis, and fibrosis. In this study, we have developed a novel class of MMP2-selective inhibitors by hybridizing the peptide that binds to a zinc ion and S2-S5 pockets with small molecules that bind to the S1' pocket.

View Article and Find Full Text PDF

UDP-3--acyl--acetylglucosamine deacetylase (LpxC) is a zinc metalloenzyme that catalyzes the first committed step in the biosynthesis of Lipid A, an essential component of the cell envelope of Gram-negative bacteria. The most advanced, disclosed LpxC inhibitors showing antibacterial activity coordinate zinc through a hydroxamate moiety with concerns about binding to other metalloenzymes. Here, we describe the discovery, optimization, and efficacy of two series of compounds derived from fragments with differing modes of zinc chelation.

View Article and Find Full Text PDF

The global increase in multidrug-resistant pathogens has caused severe problems in the treatment of infections. To overcome these difficulties, the advent of a new chemical class of antibacterial drug is eagerly desired. We aimed at creating novel antibacterial agents against bacterial type II topoisomerases, which are well-validated targets.

View Article and Find Full Text PDF

DNA gyrase and topoisomerase IV are well-validated pharmacological targets, and quinolone antibacterial drugs are marketed as their representative inhibitors. However, in recent years, resistance to these existing drugs has become a problem, and new chemical classes of antibiotics that can combat resistant strains of bacteria are strongly needed. In this study, we applied our hit-to-lead (H2L) chemistry for the identification of a new chemical class of GyrB/ParE inhibitors by efficient use of thermodynamic parameters.

View Article and Find Full Text PDF