Publications by authors named "Kostyak J"

Apoptosis signal-regulating kinase 1 (ASK1) is a serine-threonine kinase that is ubiquitously expressed in nucleated cells and is responsible for the activation of multiple mitogen-activated protein kinases (MAPK) to regulate cell stress. Activation of ASK1 via cellular stress leads to activation of downstream signaling components, activation of transcription factors, and proinflammatory cytokine production. ASK1 is also expressed in anucleate platelets and is a key player in platelet activation as it is important for signaling.

View Article and Find Full Text PDF

Spleen tyrosine kinase (Syk) is expressed in a variety of hemopoietic cells. Upon phosphorylation of the platelet immunoreceptor-based activation motif of the glycoprotein VI (GPVI)/Fc receptor gamma chain collagen receptor, both the tyrosine phosphorylation and activity of Syk are increased leading to downstream signaling events. Although it has been established that the activity of Syk is regulated by tyrosine phosphorylation, the specific roles of individual phosphorylation sites remain to be elucidated.

View Article and Find Full Text PDF

Platelets are anucleate cells that mediate hemostasis. This occurs via a primary signal that is reinforced by secreted products such as ADP that bind purinergic receptors (P2Y1 and P2Y12) on the platelet surface. We recently identified a human subject, whom we termed platelet defect subject 25 (PDS25) with a platelet functional disorder associated with the P2Y12 receptor.

View Article and Find Full Text PDF

Immune cells express receptors bearing an immune tyrosine activation motif (ITAM) containing two YXXL motifs or hemITAMs containing only one YXXL motif. Phosphorylation of the ITAM/hemITAM is mediated by Src family kinases allowing for the binding and activation of spleen tyrosine kinase (Syk). It is believed that Syk must be phosphorylated on tyrosine residues for activation, and Tyr342, а conserved tyrosine in the interdomain B region, has been shown to be critical for regulating Syk in FcεR1-activated mast cells.

View Article and Find Full Text PDF

Background: C-type lectin receptor family members play a role in many cells including platelets, where they are crucial in the separation of lymphatic and blood vessels during development. The C-type lectin-like receptor 2 (CLEC-2) receptor contains the canonical intracellular hemITAM motif through which it signals to activate Syk.

Objectives: One proposed hypothesis for signaling cascade is that Syk bridges two receptors through phosphorylated hemITAM motifs.

View Article and Find Full Text PDF

Platelets are key mediators of physiological hemostasis and pathological thrombosis, whose function must be carefully balanced by signaling downstream of receptors such as protease-activated receptor (PAR)4. Protein kinase C (PKC) is known to regulate various aspects of platelet function. For instance, PKCδ is known to regulate dense granule secretion, which is important for platelet activation.

View Article and Find Full Text PDF

Background: Cardiac rupture is a major lethal complication of acute myocardial infarction (MI). Despite significant advances in reperfusion strategies, mortality from cardiac rupture remains high. Studies suggest that cardiac rupture can be accelerated by thrombolytic therapy, but the relevance of this risk factor remains controversial.

View Article and Find Full Text PDF

Protein tyrosine phosphatase nonreceptor type 7 (PTPN7), also called hematopoietic protein tyrosine phosphatase, controls extracellular signal-regulated protein kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase in T lymphocytes. Because ERK1/2 plays an important role in regulating thromboxane A (TXA) generation in platelets, we investigated the function of PTPN7 in these cells. Using immunoblot analysis, we detected PTPN7 in both human and mouse platelets but not in PTPN7-null mice.

View Article and Find Full Text PDF

Platelet activation is essential for hemostasis. Central to platelet activation are the signals transmitted through surface receptors such as glycoprotein VI, the protease-activated receptors, and C-type lectin-like receptor 2 (CLEC-2). CLEC-2 is a HemITAM (hem-immunoreceptor tyrosine activation motif)-bearing receptor that binds podoplanin and signals through spleen tyrosine kinase (Syk).

View Article and Find Full Text PDF
Article Synopsis
  • CD45 is a protein that's usually found on blood cells, but researchers found a special smaller version of it in platelets (the cells that help with blood clotting).
  • They studied how this smaller version affects how well platelets work in experiments with mice that didn’t have CD45.
  • The results showed that without this smaller CD45, the platelets had trouble doing their job, which made it harder for the mice to stop bleeding properly.
View Article and Find Full Text PDF

Phosphatidylinositol 3-kinase is an important signaling molecule that, once activated, leads to the generation of phosphatidylinositol (3,4,5)-trisphosphate (PIP). We performed a proteomic screen to identify PIP-interacting proteins in human platelets Among these proteins, we found engulfment and cell motility 1 (ELMO1), a scaffold protein with no catalytic activity. ELMO1 is expressed in platelets and interacts with active RhoG.

View Article and Find Full Text PDF

Unlabelled: Essentials RAS proteins are expressed in platelets but their functions are largely uncharacterized. TC21/RRas2 is required for glycoprotein VI-induced platelet responses and for thrombus stability in vivo. TC21 regulates platelet aggregation by control of α β integrin activation, via crosstalk with Rap1b.

View Article and Find Full Text PDF
Article Synopsis
  • PKC (Protein Kinase C) has been suggested to play a crucial role in megakaryopoiesis, but the specific functions of PKCε remain unclear.
  • A study using PKCε knockout mice revealed that these mice have increased platelet counts and more megakaryocyte progenitor cells compared to normal controls, indicating an enhanced platelet production.
  • The research confirms that PKCε acts as a negative regulator of megakaryopoiesis by showing altered thrombopoietin signaling and faster recovery from immune-induced thrombocytopenia in PKCε null mice.
View Article and Find Full Text PDF

The binding of von Willebrand factor (VWF) to the platelet membrane glycoprotein 1b-IX (GP1b-IX) leads to activation of platelets. GP1b was shown to signal via the FcRγ-ITAM (Fc Receptor γ-Immunoreceptor tyrosine-based activation motif) pathway, activating spleen tyrosine kinase (Syk) and other tyrosine kinases. However, there have been conflicting reports regarding the role of Syk in GP1b signaling.

View Article and Find Full Text PDF

Megakaryocyte maturation and polyploidization are critical for platelet production; abnormalities in these processes are associated with myeloproliferative disorders, including thrombocytopenia. Megakaryocyte maturation signals through cascades that involve p21-activated kinase (Pak) function; however, the specific role for Pak kinases in megakaryocyte biology remains elusive. Here, we identify Pak2 as an essential effector of megakaryocyte maturation, polyploidization, and proplatelet formation.

View Article and Find Full Text PDF

Objective: We previously determined that protein kinase C δ (PKCδ) regulates platelet function. However, the function of PKCδ in megakaryopoiesis is unknown.

Approach And Results: Using PKCδ(-/-) and wild-type littermate mice, we found that deficiency of PKCδ caused an increase in white blood cells and platelet counts, as well as in bone marrow and splenic megakaryocytes (P<0.

View Article and Find Full Text PDF

Platelets upon activation change their shape, aggregate and secrete alpha and dense granule contents among which ADP acts as a feedback activator. Different Protein Kinase C (PKC) isoforms have specific non-redundant roles in mediating platelet responses including secretion and thrombus formation. Murine platelets lacking specific PKC isoforms have been used to evaluate the isoform specific functions.

View Article and Find Full Text PDF

Megakaryocytes are large, polyploid cells that produce platelets. We have previously reported that calcium- and integrin-binding protein 1 (CIB1) regulates endomitosis in Dami cells. To further characterize the role of CIB1 in megakaryopoiesis, we used a Cib1(-/-) mouse model.

View Article and Find Full Text PDF

Endomitosis is a form of mitosis in which both karyokinesis and cytokinesis are interrupted and is a hallmark of megakaryocyte differentiation. Very little is known about how such a dramatic alteration of the cell cycle in a physiological setting is achieved. Thrombopoietin-induced signaling is essential for induction of endomitosis.

View Article and Find Full Text PDF

Background: Prepubescent children may oxidize fatty acids more readily than adults. Therefore, dietary fat needs would be higher for children compared with adults. The dietary fat recommendations are higher for children 4 to 18 yrs (i.

View Article and Find Full Text PDF

In adult heart, selective PKCepsilon activation limits ischemia (I)-reperfusion (R) damage and mimics the protection associated with ischemic preconditioning. We sought to determine whether local delivery of PKCepsilon activator peptide psiepsilon-receptor for activated C-kinase (psiepsilon-RACK) is sufficient to produce a similarly protected phenotype in aged hearts. Langendorff-perfused hearts isolated from adult (5 mo; n = 9) and aged (24 mo; n = 9) male Fisher 344 rats were perfused with psiepsilon-RACK conjugated to Tat (500 nM) or Tat only (500 nM) for 10 min before global 31-min ischemia.

View Article and Find Full Text PDF

Platelets are small anucleate cells that travel near the vessel wall during laminar flow. In response to vascular injury, platelets undergo alterations in morphology which allow them to aggregate and cover the injured site. Platelets are produced by megakaryocytes in a process that involves the formation of platelet precursors called proplatelets and subsequent release of these proplatelets into the circulation.

View Article and Find Full Text PDF

The mechanisms underlying the age-dependent reversal of female cardioprotection are poorly understood and complicated by findings that estrogen replacement is ineffective at reducing cardiovascular mortality in postmenopausal women. Although several protective signals have been identified in young animals, including PKC and Akt, how these signals are affected by age, estrogen deficiency, and ischemia-reperfusion (I/R) remains unknown. To determine the independent and combined effects of age and estrogen deficiency on I/R injury and downstream PKC-Akt signaling, adult and aged female F344 rats (n = 12/age) with ovaries intact or ovariectomy (Ovx) were subjected to I/R using Langendorff perfusion (31-min global-ischemia).

View Article and Find Full Text PDF

Objective: Age is a leading risk factor for the development of ischaemic heart disease and failure. However, the efficacy of cardioprotective strategies designed to rescue the aged myocardium remains controversial. We have previously demonstrated increased levels of basal cardiac protein kinase Cdelta (PKCdelta) with ageing, a well-known mediator of apoptotic cell death following ischaemia and reperfusion (I/R) in adult hearts.

View Article and Find Full Text PDF