Publications by authors named "Kostoglou M"

In recent years, bio-based poly(ethylene furanoate) has gained the attention of packaging industries owing to its remarkable properties as a promising alternative to fossil-based polymers. It is necessary to synthesize high-molecular-weight polymers using effective and straightforward techniques for their commercialization. In this present work, poly(ethylene 2,5-furan dicarboxylate) (PEF) was produced with a high molecular weight of 0.

View Article and Find Full Text PDF

Chromium and arsenic are commonly found in water and wastewater as hexavalent chromium, Cr(VI), and inorganic arsenic species, such as pentavalent arsenic, As(V). In aqueous media, both Cr(VI) and As(V) exist predominantly in the form of oxy-anions. In our study, we prepared a polyethylenimine-silica composite material (SiO₂-PEI) as an adsorbent to study the adsorption capacity for chromate and arsenate ions.

View Article and Find Full Text PDF
Article Synopsis
  • * The study focuses on analyzing how different proposed shapes of viral shedding rates from infected individuals influence the estimation of SARS-CoV-2 spread in Thessaloniki during 2022, particularly during the Omicron variant surge.
  • * Findings indicate that the timing of the maximum viral shedding rate relative to infection reporting is critical for estimating infection rates, while factors like the duration of shedding and the specific shape of the distribution are less significant.
View Article and Find Full Text PDF

Hypothesis: In order to understand the basic mechanisms affecting emulsion stability, the intrinsic dynamics of the drop population must be investigated. We hypothesize that transient ballistic motion can serve as a marker of interactions between drops. In 1G conditions, buoyancy-induced drop motion obscures these interactions.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on improving the frying process of natural porous materials like potatoes by using horizontal acceleration to enhance heat and mass transfer during frying.
  • The innovative frying device operates with a unique planetary motion, involving simultaneous rotation around two vertical axes, which helps create convective currents in oil and expel vapor bubbles from the food.
  • The research evaluates how factors like rotational speed, oil temperature, and frying duration affect water loss and the taste quality of the fried items, aiming for a more energy-efficient and healthier frying method.
View Article and Find Full Text PDF

Online techniques for monitoring biofilm formation and evolution are limited, especially as regards its application in flowing water systems. This is chiefly due to the absence of efficient non-destructive and non-invasive sensing methods. In this study, a sensitive electrical resistance spectroscopy technique is developed to monitor non-invasively and in real time the growth of biofilms over metallic surfaces inside water flow systems.

View Article and Find Full Text PDF

Microbial adhesion and spreading on surfaces are crucial aspects in environmental and industrial settings being also the early stage of complex surface-attached microbial communities known as biofilms. In this work, -laden droplets on hydrophilic substrates (glass coupons) are allowed to partially evaporate before running wetting measurements, to study the effect of evaporation on their interfacial behavior during spillover or splashing. Forced wetting is investigated by imposing controlled centrifugal forces, using a novel rotatory device ().

View Article and Find Full Text PDF

Astronauts are spending longer periods locked up in ships or stations for scientific and exploration spatial missions. The International Space Station (ISS) has been inhabited continuously for more than 20 years and the duration of space stays by crews could lengthen with the objectives of human presence on the moon and Mars. If the environment of these space habitats is designed for the comfort of astronauts, it is also conducive to other forms of life such as embarked microorganisms.

View Article and Find Full Text PDF

Mixtures of anionic sodium oleate (NaOl) and nonionic ethoxylated or alkoxylated surfactants improve the selective separation of magnesite particles from mineral ores during the process of flotation. Apart from triggering the hydrophobicity of magnesite particles, these surfactant molecules adsorb to the air-liquid interface of flotation bubbles, changing the interfacial properties and thus affecting the flotation efficiency. The structure of adsorbed surfactants layers at the air-liquid interface depends on the adsorption kinetics of each surfactant and the reformation of intermolecular forces upon mixing.

View Article and Find Full Text PDF

Dietary nutrition and uptake of earth-like foods are extremely important aspects for the health and performance of astronauts, especially during future planned long-term space missions. Despite the major progress in studying and designing systems for crop cultivation in microgravity conditions in the last years, there hasn't been equal interest in food preparation processes and cooking. There are several reasons for this but it is chiefly because at present astronauts stay in space for a few months at most, so there is no serious nutritional or psychological need for earth-like food habits.

View Article and Find Full Text PDF

Limitations associated with the use of linear biodegradable polyesters in the preparation of anticancer nano-based drug delivery systems (nanoDDS) have turned scientific attention to the utilization of branched-chain (co-)polymers. In this context, the present study evaluates the use of novel branched poly(ε-caprolactone) (PCL)-based copolymers of different architectures for the preparation of anticancer nanoparticle (NP)-based formulations, using paclitaxel (PTX) as a model drug. Specifically, three PCL-polyol branched polyesters, namely, a three-arm copolymer based on glycerol (PCL-GLY), a four-arm copolymer based on pentaerythritol (PCL-PE), and a five-arm copolymer based on xylitol (PCL-XYL), were synthesized via ring-opening polymerization and characterized by proton nuclear magnetic resonance (H-NMR), gel permeation chromatography (GPC), intrinsic viscosity, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy and cytotoxicity.

View Article and Find Full Text PDF

In the present work, Risperidone microparticles from poly(lactic acid)/poly(hexylene succinate) (PLA-b-PHSu) block copolymers in different ratios, 95/05, 90/10 and 80/20 /, were examined as long-acting injectable formulations. Nuclear magnetic resonance (NMR) was used to verify the successful synthesis of copolymers. Enzymatic hydrolysis showed an increase in weight loss as the content of PHSu increased, while the cytotoxicity studies confirmed the biocompatibility of the copolymers.

View Article and Find Full Text PDF

Epidemic spread models are useful tools to study the spread and the effectiveness of the interventions at a population level, to an epidemic. The workhorse of spatially homogeneous class models is the SIR-type ones comprising ordinary differential equations for the unknown state variables. The transition between different states is expressed through rate functions.

View Article and Find Full Text PDF

This work compares four different image processing algorithms for the analysis of image data obtained during the Multiscale Boiling Experiment of ESA, executed on-board the International Space Station. Two separate experimental campaigns have been performed in 2019 and 2020, aiming to investigate boiling phenomena in microgravity, with and without the presence of shear flow and electric field. A heated substrate, at the bottom of the test cell, creates a temperature profile across the liquid bulk above it.

View Article and Find Full Text PDF

In the current work, a series of PCL polyesters with different molecular weights was synthesized and used for the fabrication of nanofibrous patches via electrospinning, as sustained release matrices for leflunomide's active metabolite, teriflunomide (TFL). The electrospinning conditions for each sample were optimized and it was found that only one material with high Mn (71,000) was able to produce structures with distinct fibers devoid of the presence of beads. The successful preparation of the fibers was determined by scanning electron microscopy (SEM).

View Article and Find Full Text PDF

This study aims to provide insights into biofilm resistance associated with their structural properties acquired during formation and development. On this account, the wetting and imbibition behavior of dehydrated biofilms grown on stainless steel electropolished substrates is thoroughly examined at different biofilm ages. A polar liquid (water) and a non-polar liquid (diiodomethane) are employed as wetting agents in the form of sessile droplets.

View Article and Find Full Text PDF

Conventional SARS-CoV-2 surveillance based on genotyping of clinical samples is characterized by challenges related to the available sequencing capacity, population sampling methodologies, and is time, labor, and resource-demanding. Wastewater-based variant surveillance constitutes a valuable supplementary practice, since it does not require extensive sampling, and provides information on virus prevalence in a timely and cost-effective manner. Consequently, we developed a sensitive real-time RT-PCR-based approach that exclusively amplifies and quantifies SARS-CoV-2 genomic regions carrying the S:Δ69/70 deletion, indicative of the Omicron BA.

View Article and Find Full Text PDF

The COVID-19 pandemic represents an unprecedented global crisis necessitating novel approaches for, amongst others, early detection of emerging variants relating to the evolution and spread of the virus. Recently, the detection of SARS-CoV-2 RNA in wastewater has emerged as a useful tool to monitor the prevalence of the virus in the community. Here, we propose a novel methodology, called lineagespot, for the monitoring of mutations and the detection of SARS-CoV-2 lineages in wastewater samples using next-generation sequencing (NGS).

View Article and Find Full Text PDF

Reliable mathematical models are important tools for design/optimization of haemo-filtration modules. For a specific module, such a model requires knowledge of fluid- mechanical and mass transfer parameters, which have to be determined through experimental data representative of the usual countercurrent operation. Attempting to determine all these parameters, through measured/external flow-rates and pressures, combined with the inherent inaccuracies of pressure measurements, creates an ill-posed problem (as recently shown).

View Article and Find Full Text PDF

Biofilms are resilient to environmental conditions and often resistant even to strong disinfectants. It is crucial to investigate their interfacial properties, which can be effectively characterized by wetting analysis. Wetting phenomena on biofilm surfaces have been poorly investigated in literature, in particular a systematic study of wetting on real biofilm-coated substrates including the application of external body forces (forced wetting, i.

View Article and Find Full Text PDF

During the COVID-19 pandemic, wastewater-based epidemiology (WBE) has been engaged to complement medical surveillance and in some cases to also act as an early diagnosis indicator of viral spreading in the community. Most efforts worldwide by the scientific community and commercial companies focus on the formulation of protocols for SARS-CoV-2 analysis in wastewater and approaches addressing the quantitative relationship between WBE and medical surveillance are lacking. In the present study, a mathematical model is developed which uses as input the number of daily positive medical tests together with the highly non-linear shedding rate curve of individuals to estimate the evolution of global virus shedding rate in wastewater along calendar days.

View Article and Find Full Text PDF

Accounting for SARS-CoV-2 adsorption on solids suspended in wastewater is a necessary step towards the reliable estimation of virus shedding rate in a sewerage system, based on measurements performed at a terminal collection station, i.e., at the entrance of a wastewater treatment plant.

View Article and Find Full Text PDF

Wetting of dehydrated biofilms grown on glass substrates by an external liquid is employed as a means to investigate the complex morphology of these biofilms along with their capability to interact with external fluids. The porous structure left behind after dehydration induces interesting droplet spreading on the external surface and imbibition into pores upon wetting. Static contact angles and volume loss by imbibition measured right upon droplet deposition indicate that biofilms of higher incubation times show a higher porosity and effective hydrophilicity.

View Article and Find Full Text PDF

Novel chitosan copolymers (CS-g-SBMA) grafted with [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) in various molar ratio 1.5:1, 5:1, 11.5:1 and 20:1, were synthesized in the present study.

View Article and Find Full Text PDF

The effect of rotation on adsorption kinetics of CO on activated carbon (AC) is studied using a novel rotation device. The device consists of a rotating cylindrical cell with inner dimensions of 4.5 cm radius and 1 mm height, while it operates at 5000 and 8000 rpm.

View Article and Find Full Text PDF