The enhancement of the photovoltaic performance upon the aging process at particular environment is often observed in perovskite solar cells (PSCs), particularly for the devices with 2,2',7,7'-tetrakis(N,N-di(4-methoxyphenyl)amino)-9,9'-spirobifluorene (spiro-OMeTAD) as hole transporting material (HTM). In this work, for the first time the effect of aging the typical n-i-p PSCs employing nickel phthalocyanine (coded as Bis-PF-Ni) solely as dopant-free HTM is investigated and as an additive in spiro-OMeTAD solution. This study reveals that the prolong aging of these devices at dry air condition (RH = 2%, 25 °C) is beneficial for the improvement of their performances.
View Article and Find Full Text PDFThe present study highlights the importance of the net density of charge carriers at the ground state on photocatalytic activity of the faceted particles, which can be seen as a highly underexplored problem. To investigate it in detail, we have systematically doped {1 0 1} enclosed anatase nanoparticles with Gd ions to manipulate the charge carrier concentration. Furthermore, control experiments using an analogical Nb doped sample were performed to discuss photocatalytic activity in the increased range of free electrons.
View Article and Find Full Text PDFThe hydrogenation of CO to CH has gained considerable interest in terms of sustainable energy and environmental mitigation. In this regard, the present work aims to investigate the adsorptive concentration and CO methanation performance over CoFe and NiFe bimetallic catalysts supported on fumed alumina-silica SA96 support at 170-450 °C and under atmospheric pressure. The catalysts were prepared by wet impregnation method, subjected to calcination and further reduced with hydrogen, and their performance in CO methanation was investigated in a hydrogen-rich 2%CO-55%H-43%He gas mixture.
View Article and Find Full Text PDFCatalytic conversion of lignin to value-added aromatic compounds is still an open challenge, since the selective cleavage of the linkages interconnecting the aromatic molecules, especially the β-O-4 ones, is not efficiently achieved yet. Herein, novel titania-based nanostructured materials were synthesized using low-power-low-frequency ultrasound that demonstrated high efficiency for the selective cleavage of C-C bond of β-O-4 linkages of lignin-inspired model compounds. Going a step ahead, experiments of sonophotocatalytic valorization of 2-phenoxy-1-phenylethanol were contacted for the first time, where the exposure to ultrasound leading to better conversion and selectivity towards the desired products in the case of the novel ultrasound-synthesized nano-photocatalyst.
View Article and Find Full Text PDFA series of facet-engineered TiO/BaFeO composites were synthesized through hydrothermal growth of both phases and subsequent deposition of the different, faceted TiO nanoparticles onto BaFeO microplates. The well-defined geometry of the composite and uniaxial magnetic anisotropy of the ferrite allowed alternate interfaces between both phases and fixed the orientation between the TiO crystal structure and the remanent magnetic field within BaFeO. The morphology and crystal structure of the composites were confirmed by a combination of scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses together with the detailed study of BaFeO electronic and magnetic properties.
View Article and Find Full Text PDFThe sale of antibiotics and antifungals has skyrocketed since 2020. The increasing threat of pathogens like ESKAPE bacteria (, , , , , and spp.), which are effective in evading existing antibiotics, and yeasts like or is pressing to develop efficient antimicrobial alternatives.
View Article and Find Full Text PDFThis work aims to study a possible modification in the electronic structure of scandia-ceria-stabilized zirconia (10Sc1CeSZ) ceramics sintered at different temperatures. In addition to using X-ray diffraction (XRD), scanning electron microscopy (SEM) and impedance spectroscopy to investigate the structural and electrical properties, we employed X-ray photoelectron spectroscopy (XPS) to determine the chemical state information of the atoms involved, along with compositional analysis. As expected, a significant increase in grain ionic conductivity with the sintering temperature was present.
View Article and Find Full Text PDFA large amount of graphene-related research is its use as a filler for polymer composites, including thin nanocomposite films. However, its use is limited by the need for large-scale methods to obtain high-quality filler, as well as its poor dispersion in the polymer matrix. This work presents polymer thin-film composites based on poly(vinyl chloride) (PVC) and graphene, whose surfaces were modified by curcuminoids.
View Article and Find Full Text PDFUltrason Sonochem
March 2023
The research for "green" and economically feasible approaches such as (photo)catalysis especially for biomass valorization such as selective oxidation of biomass derived compounds like aromatic alcohols to corresponding aldehyde by avoiding the harsh reaction conditions and the addition of reagents concentrate the focus of attention the last years. Hence, design and development of novel photocatalyst for the partial selective oxidation is highly desirable. In this research work, ultrasonication of different frequencies (22, 40, 80 kHz) and different amplitudes was utilized as synthesis tool in order to obtain novel materials by precipitation method.
View Article and Find Full Text PDFA 44-year-old woman was admitted to hospital with end-stage renal failure, productive cough, and decreased exercise tolerance. She had owned nine cats, which resulted in long-term exposure (18 years) to silica-containing bentonite cat litter. High-resolution computed tomography of the chest showed micronodular lesions in the lungs, and mild mediastinal lymphadenopathy.
View Article and Find Full Text PDFA novel conjugation of guar gum with xanthate groups via facile aqueous xanthation reaction has been reported. Density of grafted xanthate on guar gum product (GG-X) is as high as 4.4%, thus GG-X is conceivably characterized and confirmed by various spectrometric, electrochemical, thermogravimetric, and microscopic methods.
View Article and Find Full Text PDF