Publications by authors named "Koster G"

Sm-doped Pb(MgNb)O-PbTiO (Sm-PMN-PT) bulk materials have revealed outstanding ferroelectric and piezoelectric properties due to enhanced local structural heterogeneity. In this study, we further explore the potential of Sm-PMN-PT by fabricating epitaxial thin films by pulsed laser deposition, revealing that Sm doping significantly improves the capacitive energy-storage, piezoelectric, electrocaloric, and pyroelectric properties of PMN-PT thin films. These Sm-PMN-PT thin films exhibit fatigue-free performance up to 10 charge-discharge cycles and maintain thermal stability across a wide temperature range from -40 to 200 °C.

View Article and Find Full Text PDF

Background: MecROX is a mechanistic sub-study of the UK-ROX trial which was designed to evaluate the clinical and cost-effectiveness of a conservative approach to oxygen therapy for invasively ventilated adults in intensive care. This is based on the scientific rationale that excess oxygen is harmful. Epithelial cell damage with alveolar surfactant deficiency is characteristic of hyperoxic acute lung injury.

View Article and Find Full Text PDF

Two-dimensional magnetic materials can exhibit new magnetic properties due to the enhanced spin fluctuations that arise in reduced dimension. However, the suppression of the long-range magnetic order in two dimensions due to long-wavelength spin fluctuations, as suggested by the Mermin-Wagner theorem, has been questioned for finite-size laboratory samples. Here we study the magnetic properties of a dimensional crossover in superlattices composed of the antiferromagnetic LaFeO and SrTiO that, thanks to their large lateral size, allowed examination using a sensitive magnetic probe - muon spin rotation spectroscopy.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the challenges in current data storage technology, specifically the need for materials that enable higher density, faster access times, and lower power consumption.
  • It highlights the use of vertically aligned nanocomposites (VANs) made from ferromagnetic LaSrMnO (LSMO) nanopillars in a ZnO matrix, which allows for controllable magnetic anisotropy.
  • The research finds that these VAN films align the magnetic easy axis out-of-plane and provide significant advantages in remnant magnetization and bit density, suggesting their potential in improving data storage technologies.
View Article and Find Full Text PDF

Understanding and tuning epitaxial complex oxide films are crucial in controlling the behavior of devices and catalytic processes. Substrate-induced strain, doping, and layer growth are known to influence the electronic and magnetic properties of the bulk of the film. In this study, we demonstrate a clear distinction between the bulk and surface of thin films of LaSrMnO in terms of chemical composition, electronic disorder, and surface morphology.

View Article and Find Full Text PDF

Future pulsed-power electronic systems based on dielectric capacitors require the use of environment-friendly materials with high energy-storage performance that can operate efficiently and reliably in harsh environments. Here, a study of multilayer structures, combining paraelectric-like BaSrTiO (BST) with relaxor-ferroelectric BaZrTiO (BZT) layers on SrTiO-buffered Si substrates, with the goal to optimize the high energy-storage performance is presented. The energy-storage properties of various stackings are investigated and an extremely large maximum recoverable energy storage density of ≈165.

View Article and Find Full Text PDF

We study the electrocatalytic oxygen evolution reaction using in situ X-ray absorption spectroscopy (XAS) to track the dynamics of the valence state and the covalence of the metal ions of LaFeO and LaFeO/LaNiO thin films. The active materials are 8 unit cells grown epitaxially on 100 nm conductive LaSrMnO layers using pulsed laser deposition (PLD). The perovskite layers are supported on monolayer CaNbO nanosheet-buffered 100 nm SiN membranes.

View Article and Find Full Text PDF

Because of its low hysteresis, high dielectric constant, and strong piezoelectric response, Pb(MgNb)O-PbTiO (PMN-PT) thin films have attracted considerable attention for the application in PiezoMEMS, field-effect transistors, and energy harvesting and storage devices. However, it remains a great challenge to fabricate phase-pure, pyrochlore-free PMN-PT thin films. In this study, we demonstrate that a high deposition rate, combined with a tensile mismatched template layer can stabilize the perovskite phase of PMN-PT films and prevent the nucleation of passive pyrochlore phases.

View Article and Find Full Text PDF

Mammalian cell membranes composed of a mixture of glycerophospholipids, the relative composition of individual phospholipids and the dynamic flux vary between cells. In addition to their structural role, membrane phospholipids are involved in cellular signalling and immunomodulatory functions. In this study, we investigate the molecular membrane composition and dynamic flux of phosphatidylcholines in CD15+ leucocytes and CD3+ lymphocytes extracted from patients with acute respiratory distress syndrome (ARDS).

View Article and Find Full Text PDF

α-Quartz (SiO) is one of the most widely used piezoelectric materials. However, the challenges associated with the control of the crystallization and the growth process limit its production to the hydrothermal growth of bulk crystals. GeO can also crystallize into the α-quartz phase, with a higher piezoelectric response and better thermal stability than SiO.

View Article and Find Full Text PDF

Designing a broad-spectrum gas sensor capable of identifying gas components in complex environments, such as mixed atmospheres or extreme temperatures, is a significant concern for various technologies, including energy, geological science, and planetary exploration. The main challenge lies in finding materials that exhibit high chemical stability and wide working temperature range. Materials that amplify signals through non-chemical methods could open up new sensing avenues.

View Article and Find Full Text PDF

To meet the increasing demands of high-energy and high-power-density lithium-ion microbatteries, overlithiated LiMnO (0 ≤ ≤ 1) is an attractive cathode candidate due to the high theoretical capacity of 296 mAh g and the interconnected lithium-ion diffusion pathways. However, overlithiation triggers the irreversible cubic-tetragonal phase transition due to Jahn-Teller distortion, causing rapid capacity degradation. In contrast to conventional lithium-ion batteries, microbatteries offer the opportunity to develop specific thin-film-based modification strategies.

View Article and Find Full Text PDF

Background: Surfactant phospholipid (PL) composition plays an important role in lung diseases. We compared the PL composition of non-invasively collected exhaled breath particles (PEx) with bronchoalveolar lavage (BAL) and induced sputum (ISP) at baseline and following endotoxin (LPS) challenges.

Methods: PEx and BAL were collected from ten healthy nonsmoking participants before and after segmental LPS challenge.

View Article and Find Full Text PDF

Development of a robust photocathode using low-cost and high-performing materials, e.g., p-Si, to produce clean fuel hydrogen has remained challenging since the semiconductor substrate is easily susceptible to (photo)corrosion under photoelectrochemical (PEC) operational conditions.

View Article and Find Full Text PDF

Recent advances in methods to culture pluripotent stem cells to model human development have resulted in entities that increasingly have recapitulated advanced stages of early embryo development. These entities, referred to by numerous terms such as embryoids, are becoming more sophisticated and could resemble human embryos ever more closely as research progresses. This paper reports a systematic review of the ethical, legal, regulatory, and policy questions and concerns found in the literature concerning human embryoid research published from 2016 to 2022.

View Article and Find Full Text PDF

Crowd congestion is a common issue at train stations around major sports events, and puts passengers at risk and lowers service quality. Guiding arriving fans along less traveled routes may alleviate congestion. Smartphone apps provide a medium to deliver route suggestions but the messages they provide are pivotal to adherence.

View Article and Find Full Text PDF

Background: Asthma is a chronic respiratory disease with significant heterogeneity in its clinical presentation and pathobiology. There is need for improved understanding of respiratory lipid metabolism in asthma patients and its relation to observable clinical features.

Objective: We performed a comprehensive, prospective, cross-sectional analysis of the lipid composition of induced sputum supernatant obtained from asthma patients with a range of disease severities, as well as from healthy controls.

View Article and Find Full Text PDF

High-entropy materials are an emerging pathway in the development of high-activity (electro)catalysts because of the inherent tunability and coexistence of multiple potential active sites, which may lead to earth-abundant catalyst materials for energy-efficient electrochemical energy storage. In this report, we identify how the multication composition in high-entropy perovskite oxides (HEO) contributes to high catalytic activity for the oxygen evolution reaction (OER), i.e.

View Article and Find Full Text PDF

The application of two-dimensional (2D) materials has alleviated a number of challenges of traditional epitaxy and pushed forward the integration of dissimilar materials. Besides acting as a seed layer for van der Waals epitaxy, the 2D materials─being atom(s) thick─have also enabled wetting transparency in which the potential field of the substrate, although partially screened, is still capable of imposing epitaxial overgrowth. One of the crucial steps in this technology is the preservation of the quality of 2D materials during and after their transfer to a substrate of interest.

View Article and Find Full Text PDF

Vanadium dioxide (VO) is a popular candidate for electronic and optical switching applications due to its well-known semiconductor-metal transition. Its study is notoriously challenging due to the interplay of long- and short-range elastic distortions, as well as the symmetry change and the electronic structure changes. The inherent coupling of lattice and electronic degrees of freedom opens the avenue toward mechanical actuation of single domains.

View Article and Find Full Text PDF

Patient-specific instrumentation (PSI) in total knee arthroplasty (TKA) has been introduced to reduce instruments and surgical time and to improve implant alignment. The aim of this study was to compare TKA with patient-specific and conventional instrumentation with regard to the use of resources in the operating room (OR), alignment and patient-reported outcome. A total of 139 TKA with PSI or conventional instrumentation were included in three centers.

View Article and Find Full Text PDF

At traffic hubs, it is important to avoid congestion of pedestrian streams to ensure safety and a good level of service. This presents a challenge, since distributing crowds on different routes is much more difficult than opening valves to, for example, regulate fluid flow. Humans may or may not comply with re-directions suggested to them typically with the help of signage, loudspeakers, apps, or by staff.

View Article and Find Full Text PDF

The coronavirus disease (COVID-19) pandemic has changed our lives and still poses a challenge to science. Numerous studies have contributed to a better understanding of the pandemic. In particular, inhalation of aerosolised pathogens has been identified as essential for transmission.

View Article and Find Full Text PDF

Hematite (α-FeO) is a photoelectrode for the water splitting process because of its relatively narrow bandgap and abundance in the earth's crust. In this study, the photoexcited state of a hematite thin film was investigated with femtosecond oxygen K-edge X-ray absorption spectroscopy (XAS) at the PAL-XFEL in order to follow the dynamics of its photoexcited states. The 200 fs decay time of the hole state in the valence band was observed via its corresponding XAS feature.

View Article and Find Full Text PDF

In order to bring the diverse functionalities of transition metal oxides into modern electronics, it is imperative to integrate oxide films with controllable properties onto the silicon platform. Here, we present asymmetric LaMnO/BaTiO/SrTiO superlattices fabricated on silicon with layer thickness control at the unit-cell level. By harnessing the coherent strain between the constituent layers, we overcome the biaxial thermal tension from silicon and stabilize c-axis oriented BaTiO layers with substantially enhanced tetragonality, as revealed by atomically resolved scanning transmission electron microscopy.

View Article and Find Full Text PDF