Islands are renowned as evolutionary laboratories and support many species that are not found elsewhere. Islands are also of great conservation concern, with many of their endemic species currently threatened or extinct. Here we present a standardized checklist of all known vascular plants that occur on islands and document their geographical and phylogenetic distribution and conservation risk.
View Article and Find Full Text PDFHumans have been driving a global erosion of species richness for millennia, but the consequences of past extinctions for other dimensions of biodiversity-functional and phylogenetic diversity-are poorly understood. In this work, we show that, since the Late Pleistocene, the extinction of 610 bird species has caused a disproportionate loss of the global avian functional space along with ~3 billion years of unique evolutionary history. For island endemics, proportional losses have been even greater.
View Article and Find Full Text PDFIt has recently been proposed that the study of microbial dynamics in humans may gain insights from island biogeographical theory. Here, we test whether the diversity of the intratumoral microbiota of colorectal cancer tumors (CRC) follows a power law with tumor size akin to the island species-area relationship. We confirm a direct correlation between the quantity of Amplicon Sequence Variants (ASVs) within CRC tumors and tumor sizes, following a (log)power model, explaining 47% of the variation.
View Article and Find Full Text PDFResearch on island species-area relationships (ISAR) has expanded to incorporate functional (IFDAR) and phylogenetic (IPDAR) diversity. However, relative to the ISAR, we know little about IFDARs and IPDARs, and lack synthetic global analyses of variation in form of these three categories of island diversity-area relationship (IDAR). Here, we undertake the first comparative evaluation of IDARs at the global scale using 51 avian archipelagic data sets representing true and habitat islands.
View Article and Find Full Text PDFBackground: Kea is the westernmost island of the Cyclades and is located between Syros and Attica, in central Greece. In this work, we have resampled the island after 43 years - i.e.
View Article and Find Full Text PDFThe increase in species richness with island area (ISAR) is a well-established global pattern, commonly described by the power model, the parameters of which are hypothesized to vary with system isolation and to be indicative of ecological process regimes. We tested a structural equation model of ISAR parameter variation as a function of taxon, isolation, and archipelago configuration, using a globally distributed dataset of 151 ISARs encompassing a range of taxa and archipelago types. The resulting models revealed a negative relationship between ISAR intercept and slope as a function of archipelago species richness, in turn shaped by taxon differences and by the amount and disposition of archipelago area.
View Article and Find Full Text PDFIslands provide classic model biological systems. We review how growing appreciation of geoenvironmental dynamics of marine islands has led to advances in island biogeographic theory accommodating both evolutionary and ecological phenomena. Recognition of distinct island geodynamics permits general models to be developed and modified to account for patterns of diversity, diversification, lineage development, and trait evolution within and across island archipelagos.
View Article and Find Full Text PDFSpecies abundance distributions (SAD) are central to the description of diversity and have played a major role in the development of theories of biodiversity and biogeography. However, most work on species abundance distributions has focused on one single spatial scale. Here we used data on arthropods to test predictions obtained with computer simulations on whether dispersal ability influences the rate of change of SADs as a function of sample size.
View Article and Find Full Text PDFJ Biol Res (Thessalon)
December 2017
The Aegean archipelago, comprising numerous islands and islets with great heterogeneity in topographic, geological, historical and environmental properties, offers an ideal natural laboratory for ecological and evolutionary research, and has been the stage for a very long interaction between human civilizations and local ecosystems. This work presents insights that have been gained from past and current relevant research in the area, highlighting also the importance of the Aegean archipelago as a useful model to address many major questions in biogeography, ecology and evolutionary processes. Among the most interesting findings from such studies concern the role of habitat heterogeneity as the most important determinant of species richness, the development of a new model (Choros) for the species-area-habitats relationship, the mechanistic aspects of the Small Island Effect, the very high rates of species turnover, the lack of a role for interspecific competition in shaping species co-occurrence patterns in most cases, the importance of non adaptive radiation in diversification of several taxa, the insights into the relative roles of vicariance and dispersal in speciation, the understanding of the interplay between human presence and the establishment of exotic species and extinction of indigenous biotas.
View Article and Find Full Text PDFBackground: In this contribution we present detailed distribution and abundance data for arthropod species identified during the BALA - (1999-2004) and BALA2 projects (2010-2011) from 18 native forest fragments in seven of the nine Azorean islands (all excluding Graciosa and Corvo islands, which have no native forest left).
New Information: Of the total 286 species identified, 81% were captured between 1999 and 2000, a period during which only 39% of all the samples were collected. On average, arthropod richness for each island increased by 10% during the time frame of these projects.
A key challenge in island biogeography is to quantity the role of dispersal in shaping biodiversity patterns among the islands of a given archipelago. Here, we propose such a framework. Dispersal within oceanic archipelagos may be conceptualized as a spatio-temporal process dependent on: (1) the spatial distribution of islands, because the probability of successful dispersal is inversely related to the spatial distance between islands and (2) the chronological sequence of island formation that determines the directional asymmetry of dispersal (hypothesized to be predominantly from older to younger islands).
View Article and Find Full Text PDFBackground: For a remote oceanic archipelago of up to 8 Myr age, the Azores have a comparatively low level of endemism. We present an analysis of phylogeographic patterns of endemic Azorean island arthropods aimed at testing patterns of diversification in relation to the ontogeny of the archipelago, in order to distinguish between alternative models of evolutionary dynamics on islands. We collected individuals of six species (representing Araneae, Hemiptera and Coleoptera) from 16 forest fragments from 7 islands.
View Article and Find Full Text PDFOceanic islands host a disproportionately high fraction of endangered or recently extinct endemic species. We report on species extinctions among endemic Azorean beetles following 97% habitat loss since AD 1440. We infer extinctions from historical and contemporary records and examine the influence of three predictors: geographical range, habitat specialization and body size.
View Article and Find Full Text PDFThe study of islands as model systems has played an important role in the development of evolutionary and ecological theory. The 50th anniversary of MacArthur and Wilson's (December 1963) article, 'An equilibrium theory of insular zoogeography', was a recent milestone for this theme. Since 1963, island systems have provided new insights into the formation of ecological communities.
View Article and Find Full Text PDFAnalyses of species-diversity patterns of remote islands have been crucial to the development of biogeographic theory, yet little is known about corresponding patterns in functional traits on islands and how, for example, they may be affected by the introduction of exotic species. We collated trait data for spiders and beetles and used a functional diversity index (FRic) to test for nonrandomness in the contribution of endemic, other native (also combined as indigenous), and exotic species to functional-trait space across the nine islands of the Azores. In general, for both taxa and for each distributional category, functional diversity increases with species richness, which, in turn scales with island area.
View Article and Find Full Text PDFHydrobioid freshwater gastropods were collected from mainland and insular Greece. Several threatened taxa, such as Graecoanatolica vegorriticola, Pseudamnicola negropontina, Pseudamnicola pieperi, Pseudobithynia eubooensis and Pseudoislamia balcanica, were recorded from new localities. Trichonia trichonica, which has been considered extinct from its type locality for the last twenty eight years, was re-discovered, whereas the presence of Daphniola exigua, G.
View Article and Find Full Text PDFTerrestrial slugs of the Island of Cyprus were recently studied in the framework of a study of the whole terrestrial malacofauna of the island. The present work was carried out in the Natura 2000 conservation areas of the island in 155 sampling sites over three years (2004-2007). Museum collections as well as literature references were included.
View Article and Find Full Text PDFSpecies richness is commonly thought to increase with habitat diversity. However, a recent theoretical model aiming to unify niche and island biogeography theories predicted a hump-shaped relationship between richness and habitat diversity. Given the contradiction between model results and previous knowledge, we examine whether the relationship between species richness and habitat diversity is consistently monotonically increasing and under which circumstances, if at all, such relationships could be hump shaped.
View Article and Find Full Text PDF