Proper lung function requires the maintenance of a tight endothelial barrier while simultaneously permitting the exchange of macromolecules and fluids to underlying tissue. Disruption of this barrier results in an increased vascular permeability in the lungs, leading to acute lung injury. In this study, we set out to determine whether transcriptional targets of Notch signaling function to preserve vascular integrity.
View Article and Find Full Text PDFNotch signaling is essential for the emergence of definitive hematopoietic stem cells (HSCs) in the embryo and their development in the fetal liver niche. However, how Notch signaling is activated and which fetal liver cell type provides the ligand for receptor activation in HSCs is unknown. Here we provide evidence that endothelial Jagged1 (Jag1) has a critical early role in fetal liver vascular development but is not required for hematopoietic function during fetal HSC expansion.
View Article and Find Full Text PDFThe Notch signaling pathway is an important therapeutic target for the treatment of inflammatory diseases and cancer. We previously created ligand-specific inhibitors of Notch signaling comprised of Fc fusions to specific EGF-like repeats of the Notch1 extracellular domain, called Notch decoys, which bound ligands, blocked Notch signaling, and showed anti-tumor activity with low toxicity. However, the study of their function depended on virally mediated expression, which precluded dosage control and limited clinical applicability.
View Article and Find Full Text PDFGCN2 (general control nonderepressible 2) is a serine/threonine-protein kinase that controls messenger RNA translation in response to amino acid availability and ribosome stalling. Here, we show that GCN2 controls erythrocyte clearance and iron recycling during stress. Our data highlight the importance of liver macrophages as the primary cell type mediating these effects.
View Article and Find Full Text PDFLong-term impairment in T cell-mediated adaptive immunity is a major clinical obstacle following treatment of blood disorders with hematopoietic stem cell transplantation. Although T cell development in the thymus has been extensively characterized, there are significant gaps in our understanding of prethymic processes that influence early T cell potential. We have uncovered a Notch/IL-21 signaling axis in bone marrow common lymphoid progenitor (CLP) cells.
View Article and Find Full Text PDFHere we genetically and functionally addressed potential pathways of Notch signalling in mediating vascular regeneration in mouse models. We first used transgenic adult mice with either gain- or loss-of-function Notch signalling in vascular endothelial cells and monitored perfusion in the hindlimb following ischaemia induced by femoral artery ligation. Mice deficient in Notch signalling showed defective perfusion recovery and expansion of collateral arteries.
View Article and Find Full Text PDFLifelong mammalian hematopoiesis requires continuous generation of mature blood cells that originate from Hematopoietic Stem and Progenitor Cells (HSPCs) situated in the post-natal Bone Marrow (BM). The BM microenvironment is inherently complex and extensive studies have been devoted to identifying the niche that maintains HSPC homeostasis and supports hematopoietic potential. The Notch signaling pathway is required for the emergence of the definitive Hematopoietic Stem Cell (HSC) during embryonic development, but its role in BM HSC homeostasis is convoluted.
View Article and Find Full Text PDFHematopoietic and nervous systems are linked via innervation of bone marrow (BM) niche cells. Hematopoietic stem/progenitor cells (HSPCs) express neurotransmitter receptors, such as the γ-aminobutyric acid (GABA) type B receptor subunit 1 (GABBR1), suggesting that HSPCs could be directly regulated by neurotransmitters like GABA that directly bind to GABBR1. We performed imaging mass spectrometry and found that the endogenous GABA molecule is regionally localized and concentrated near the endosteum of the BM niche.
View Article and Find Full Text PDFEndothelial cells (ECs) lining the vasculature of vertebrates respond to low oxygen (hypoxia) by maintaining vascular homeostasis and initiating adaptive growth of new vasculature through angiogenesis. Previous studies have uncovered the molecular underpinnings of the hypoxic response in ECs; however, there is a need for comprehensive temporal analysis of the transcriptome during hypoxia. Here, we sought to investigate the early transcriptional programs of hypoxic ECs by using RNA-Seq of primary cultured human umbilical vein ECs exposed to progressively increasing severity and duration of hypoxia.
View Article and Find Full Text PDFLoss-of-function studies have determined that Notch signaling is essential for hematopoietic and endothelial development. By deleting a single allele of the Notch1 transcriptional activation domain we generated viable, post-natal mice exhibiting hypomorphic Notch signaling. These heterozygous mice, which lack only one copy of the transcriptional activation domain, appear normal and have no endothelial or hematopoietic phenotype, apart from an inherent, cell-autonomous defect in T-cell lineage development.
View Article and Find Full Text PDFLung alveolar type I cells (AT1) and alveolar type II cells (AT2) regulate the structural integrity and function of alveoli. AT1, covering ∼95% of the surface area, are responsible for gas exchange, whereas AT2 serve multiple functions, including alveolar repair through proliferation and differentiation into AT1. However, the signaling mechanisms for alveolar repair remain unclear.
View Article and Find Full Text PDFActivating mutations in the gene encoding the cell-cell contact signaling protein Notch1 are common in human T cell acute lymphoblastic leukemias (T-ALLs). However, expressing mutant alleles in mice fails to efficiently induce the development of leukemia. We performed a gain-of-function screen to identify proteins that enhanced signaling by leukemia-associated Notch1 mutants.
View Article and Find Full Text PDFThe generation of functional arterial endothelial cells (aECs) from embryonic stem cells (ESCs) holds great promise for vascular tissue engineering. However, the mechanisms underlying their generation and the potential of aECs in revascularizing ischemic tissue are not fully understood. Here, we observed that hypoxia exposure of mouse ESCs induced an initial phase of HIF1α-mediated upregulation of the transcription factor Etv2, which in turn induced the commitment to the EC fate.
View Article and Find Full Text PDFDelta/Notch-like EGF-related receptor (DNER) has been reported to act as a Notch ligand, despite lacking a Delta/Serrate/Lag (DSL) binding domain common to all other known ligands. The established Notch ligand Delta-like 1 (DLL1), but not DNER, activated Notch1 in a luciferase assay, prevented the differentiation of myoblasts through Notch signaling, and bound Notch-fc in a cell-based assay. DNER is not a Notch ligand and its true function remains unknown.
View Article and Find Full Text PDFTrib2 is highly expressed in human T cell acute lymphoblastic leukemia (T-ALL) and is a direct transcriptional target of the oncogenic drivers Notch and TAL1. In human TAL1-driven T-ALL cell lines, Trib2 is proposed to function as an important survival factor, but there is limited information about the role of Trib2 in primary T-ALL. In this study, we investigated the role of Trib2 in the initiation and maintenance of Notch-dependent T-ALL.
View Article and Find Full Text PDFNotch1 is required to generate the earliest embryonic hematopoietic stem cells (HSCs); however since Notch-deficient embryos die early in gestation, additional functions for Notch in embryonic HSC biology have not been described. We used two complementary genetic models to address this important biological question. Unlike Notch1-deficient mice, mice lacking the conserved Notch1 transcriptional activation domain (TAD) show attenuated Notch1 function in vivo and survive until late gestation, succumbing to multiple cardiac abnormalities.
View Article and Find Full Text PDFNotch1 is a rational therapeutic target in several human cancers, but as a transcriptional regulator, it poses a drug discovery challenge. To identify Notch1 modulators, we performed two cell-based, high-throughput screens for small-molecule inhibitors and cDNA enhancers of a NOTCH1 allele bearing a leukemia-associated mutation. Sarco/endoplasmic reticulum calcium ATPase (SERCA) channels emerged at the intersection of these complementary screens.
View Article and Find Full Text PDFAn outstanding biological question is why tissue regeneration in mammals is limited, whereas urodele amphibians and teleost fish regenerate major structures, largely by cell cycle reentry. Upon inactivation of Rb, proliferation of postmitotic urodele skeletal muscle is induced, whereas in mammalian muscle this mechanism does not exist. We postulated that a tumor suppressor present in mammals but absent in regenerative vertebrates, the Ink4a product ARF (alternative reading frame), is a regeneration suppressor.
View Article and Find Full Text PDFCell-cell fusion is critical to the normal development of certain tissues, yet the nature and degree of conservation of the underlying molecular components remains largely unknown. Here we show that the two guanine-nucleotide exchange factors Brag2 and Dock180 have evolutionarily conserved functions in the fusion of mammalian myoblasts. Their effects on muscle cell formation are distinct and are a result of the activation of the GTPases ARF6 and Rac, respectively.
View Article and Find Full Text PDFBacteriophages are the most abundant forms of life in the biosphere and carry genomes characterized by high genetic diversity and mosaic architectures. The complete sequences of 30 mycobacteriophage genomes show them collectively to encode 101 tRNAs, three tmRNAs, and 3,357 proteins belonging to 1,536 "phamilies" of related sequences, and a statistical analysis predicts that these represent approximately 50% of the total number of phamilies in the mycobacteriophage population. These phamilies contain 2.
View Article and Find Full Text PDF