Silicon content plays an important role in determining the operational efficiency of blast furnaces (BFs) and their downstream processes in integrated steelmaking; however, existing sampling methods and first-principles models are somewhat limited in their capability and flexibility. Current data-based prediction models primarily rely on a limited set of manually selected furnace parameters. Additionally, different BFs present a diverse set of operating parameters and state variables that are known to directly influence the hot metal's silicon content, such as fuel injection, blast temperature, and raw material charge composition, among other process variables that have their own impacts.
View Article and Find Full Text PDF