Publications by authors named "Kossi A A Min-Dianey"

Graphene-based photodetection (PD) devices have been broadly studied for their broadband absorption, high carrier mobility, and mechanical flexibility. Owing to graphene's low optical absorption, the research on graphene-based PD devices so far has relied on hybrid heterostructure devices to enhance photo-absorption. Designing a new generation of PD devices supported by silicon (Si) film is considered as an innovative technique for PD devices; Si film-based devices are typically utilized in optical communication and image sensing owing to the remarkable features of Si, e.

View Article and Find Full Text PDF

Graphene-based optical sensing devices have been widely studied for their broad band absorption, high carrier mobility, and mechanical flexibility. Due to graphene's weak light absorption, studies on graphene-based optical sensing thus far have focused on hybrid heterostructure devices to enhance photo-absorption. Such hybrid devices need a complicated integration process and lead to deteriorating carrier mobility as a result of heterogeneous interfaces.

View Article and Find Full Text PDF

Graphene has been extensively investigated in advanced photodetection devices for its broadband absorption, high carrier mobility, and mechanical flexibility. Due to graphene's low optical absorptivity (2.3%), graphene-based photodetection research so far has focused on hybrid systems to increase photoabsorption.

View Article and Find Full Text PDF