Breast cancer remains one of the leading cancers for women worldwide. Fortunately, with the introduction of mammography, the mortality rate has significantly decreased. However, earlier breast cancer prediction could effectively increase the survival rates, improve patient outcomes, and avoid unnecessary biopsies.
View Article and Find Full Text PDFCancer is the second cause of mortality worldwide and it has been identified as a perilous disease. Breast cancer accounts for ∼20% of all new cancer cases worldwide, making it a major cause of morbidity and mortality. Mammography is an effective screening tool for the early detection and management of breast cancer.
View Article and Find Full Text PDFRadiologists assess the results of mammography, the key screening tool for the detection of breast cancer, to determine the presence of malignancy. They, routinely, compare recent and prior mammographic views to identify changes between the screenings. In case a new lesion appears in a mammogram, or a region is changing rapidly, it is more likely to be suspicious, compared to a lesion that remains unchanged and it is usually benign.
View Article and Find Full Text PDFIEEE J Transl Eng Health Med
December 2022
Objective: Cancer remains a major cause of morbidity and mortality globally, with 1 in 5 of all new cancers arising in the breast. The introduction of mammography for the radiological diagnosis of breast abnormalities, significantly decreased their mortality rates. Accurate detection and classification of breast masses in mammograms is especially challenging for various reasons, including low contrast and the normal variations of breast tissue density.
View Article and Find Full Text PDFBackground: Our aim was to demonstrate that automated detection and classification of breast microcalcifications, according to Breast Imaging Reporting and Data System (BI-RADS) categorisation, can be improved with the subtraction of sequential mammograms as opposed to using the most recent image only.
Methods: One hundred pairs of mammograms were retrospectively collected from two temporally sequential rounds. Fifty percent of the images included no (BI-RADS 1) or benign (BI-RADS 2) microcalcifications.