Following on from the discovery that innate immune pathways are shared widely across the tree of life comes another surprise: Hobbs et al. show that viruses targeting animals and bacteria also use highly conserved tools to fight back. Why such mechanisms remain seemingly unchanged despite the rapid coevolution among hosts and pathogens is now a key open question for the field.
View Article and Find Full Text PDFThere is overwhelming evidence that the microbiome can be important to host physiology and fitness. As such, there is interest in and some theoretical work on understanding when hosts and microbiomes (co)evolve so that microbes benefit hosts and hosts favour beneficial microbes. However, the outcome of evolution likely depends on how microbes benefit hosts.
View Article and Find Full Text PDFThe design and use of synthetic communities, or SynComs, is one of the most promising strategies for disentangling the complex interactions within microbial communities, and between these communities and their hosts. Compared to natural communities, these simplified consortia provide the opportunity to study ecological interactions at tractable scales, as well as facilitating reproducibility and fostering interdisciplinary science. However, the effective implementation of the SynCom approach requires several important considerations regarding the development and application of these model systems.
View Article and Find Full Text PDFMicroorganisms, including bacteria, archaea, viruses, fungi, and protists, are essential to life on Earth and the functioning of the biosphere. Here, we discuss the key roles of microorganisms in achieving the United Nations Sustainable Development Goals (SDGs), highlighting recent and emerging advances in microbial research and technology that can facilitate our transition toward a sustainable future. Given the central role of microorganisms in the biochemical processing of elements, synthesizing new materials, supporting human health, and facilitating life in managed and natural landscapes, microbial research and technologies are directly or indirectly relevant for achieving each of the SDGs.
View Article and Find Full Text PDFGiven the multitude of challenges Earth is facing, sustainability science is of key importance to our continued existence. Evolution is the fundamental biological process underlying the origin of all biodiversity. This phylogenetic diversity fosters the resilience of ecosystems to environmental change, and provides numerous resources to society, and options for the future.
View Article and Find Full Text PDFBacterial genomes often harbor integrated viruses (prophages), which provide novel functions but also lyse cells under stressful conditions. A new paper combines mathematical models with experimental evolution to determine how prophages are maintained in bacterial populations despite their fitness costs.
View Article and Find Full Text PDFThe species complex is a heterogeneous group of plant pathogenic bacteria associated with a wide distribution of plant species. Advances in genomics are revealing the complex evolutionary history of this species complex and the wide array of genetic adaptations underpinning their diverse lifestyles. Here, we genomically characterize two isolates collected from diseased Callery pears () in Berkeley, California in 2019 and 2022.
View Article and Find Full Text PDFThe above-ground (phyllosphere) plant microbiome is increasingly recognized as an important component of plant health. We hypothesized that phyllosphere bacterial recruitment may be disrupted in a greenhouse setting, and that adding a bacterial amendment would therefore benefit the health and growth of host plants. Using a newly developed synthetic phyllosphere bacterial microbiome for tomato (), we tested this hypothesis across multiple trials by manipulating microbial inoculation of leaves and measuring subsequent plant growth and reproductive success, comparing results from plants grown in both greenhouse and field settings.
View Article and Find Full Text PDFIn disease ecology, pathogen transmission among conspecific versus heterospecific hosts is known to shape pathogen specialization and virulence, but we do not yet know if similar effects occur at the microbiome level. We tested this idea by experimentally passaging leaf-associated microbiomes either within conspecific or across heterospecific plant hosts. Although conspecific transmission results in persistent host-filtering effects and more within-microbiome network connections, heterospecific transmission results in weaker host-filtering effects but higher levels of interconnectivity.
View Article and Find Full Text PDFBackground: Host genetics can shape microbiome composition, but to what extent it does, remains unclear. Like any other complex trait, this important question can be addressed by estimating the heritability (h) of the microbiome-the proportion of variance in the abundance in each taxon that is attributable to host genetic variation. However, unlike most complex traits, microbiome heritability is typically based on relative abundance data, where taxon-specific abundances are expressed as the proportion of the total microbial abundance in a sample.
View Article and Find Full Text PDFLeaves harbor distinct microbial communities that can have an important impact on plant health and microbial ecosystems worldwide. Nevertheless, the ecological processes that shape the composition of leaf microbial communities remain unclear, with previous studies reporting contradictory results regarding the importance of bacterial dispersal versus host selection. This discrepancy could be driven in part because leaf microbiome studies typically consider the upper and lower leaf surfaces as a single entity despite these habitats possessing considerable anatomical differences.
View Article and Find Full Text PDFBacteriophages are obligate parasites of bacteria characterized by the breadth of hosts that they can infect. This "host range" depends on the genotypes and morphologies of the phage and the bacterial host, but also on the environment in which they are interacting. Understanding phage host range is critical to predicting the impacts of these parasites in their natural host communities and their utility as therapeutic agents, but is also key to predicting how phages evolve and in doing so drive evolutionary change in their host populations, including through movement of genes among unrelated bacterial genomes.
View Article and Find Full Text PDFTo predict the composition and function of ecological communities over time, it is essential to understand how in situ evolution alters priority effects between resident and invading species. Phyllosphere microbial communities are a useful model system to explore priority effects because the system is clearly spatially delineated and can be manipulated experimentally. We conducted an experimental evolution study with tomato plants and the early-colonizing bacterium species Pantoea dispersa, exploring priority effects when P.
View Article and Find Full Text PDFThe rate and trajectory of evolution in an obligate parasite is critically dependent on those of its host(s). Adaptation to a genetically homogeneous host population should theoretically result in specialization, while adaptation to an evolving host population (i.e.
View Article and Find Full Text PDFThe absence of microbial exposure early in life leaves individuals vulnerable to immune overreaction later in life, manifesting as immunopathology, autoimmunity, or allergies. A key factor is thought to be a "critical window" during which the host's immune system can "learn" tolerance, and beyond which learning is no longer possible. Animal models indicate that many mechanisms have evolved to enable critical windows, and that their time limits are distinct and consistent.
View Article and Find Full Text PDFBacteria and lytic viruses (phages) engage in highly dynamic coevolutionary interactions over time, yet we have little idea of how transient selection by phages might shape the future evolutionary trajectories of their host populations. To explore this question, we generated genetically diverse phage-resistant mutants of the bacterium Pseudomonas syringae. We subjected the panel of mutants to prolonged experimental evolution in the absence of phages.
View Article and Find Full Text PDFIt has become increasingly clear that the microbiome plays a critical role in shaping the host organism's response to disease. There also exists mounting evidence that an organism's ploidy level is important in their response to pathogens and parasites. However, no study has determined whether or how these two factors influence one another.
View Article and Find Full Text PDFViruses of bacteria (bacteriophages or phage) have broad effects on bacterial ecology and evolution in nature that mediate microbial interactions, shape bacterial diversity, and influence nutrient cycling and ecosystem function. The unrelenting impact of phages within the microbial realm is the result, in large part, of their ability to rapidly evolve in response to bacterial host dynamics. The knowledge gained from laboratory systems, typically using pairwise interactions between single-host and single-phage systems, has made clear that phages coevolve with their bacterial hosts rapidly, somewhat predictably, and primarily by counteradapting to host resistance.
View Article and Find Full Text PDFFood crops are grown with fertilizers containing nitrogen, phosphorus, and potassium (macronutrients) along with magnesium, calcium, boron, and zinc (micronutrients) at different ratios during their cultivation. Soil and plant-associated microbes have been implicated to promote plant growth, stress tolerance, and productivity. However, the high degree of variability across agricultural environments makes it difficult to assess the possible influences of nutrient fertilizers on these microbial communities.
View Article and Find Full Text PDFMicrobial communities associated with plant leaf surfaces (i.e., the phyllosphere) are increasingly recognized for their role in plant health.
View Article and Find Full Text PDFAbstractCoevolution shapes diversity within and among populations but is difficult to study directly. Time-shift experiments, where individuals from one point in time are experimentally challenged against individuals from past, contemporary, and/or future time points, are a powerful tool to measure coevolution. This approach has proven useful both in directly measuring coevolutionary change and in distinguishing among coevolutionary models.
View Article and Find Full Text PDFWater and nutrient acquisition are key drivers of plant health and ecosystem function. These factors impact plant physiology directly as well as indirectly through soil- and root-associated microbial responses, but how they in turn affect aboveground plant-microbe interactions are not known. Through experimental manipulations in the field and growth chamber, we examine the interacting effects of water stress, soil fertility, and arbuscular mycorrhizal fungi on bacterial and fungal communities of the tomato (Solanum lycopersicum) phyllosphere.
View Article and Find Full Text PDFAdvances in next-generation sequencing have enabled the widespread measurement of microbiome composition across systems and over the course of microbiome assembly. Despite substantial progress in understanding the deterministic drivers of community composition, the role of historical contingency remains poorly understood. The establishment of new species in a community can depend on the order and/or timing of their arrival, a phenomenon known as a priority effect.
View Article and Find Full Text PDFPhage (New Rochelle)
December 2020
One crucial first step in bacteriophage therapy is choosing a phage to apply, which involves screening for effectiveness in a meaningful way. Increasingly, research suggests that tests of phage-mediated bacterial lysis poorly translate to effectiveness. We tested a seedling-based method for rapidly screening phage effectiveness .
View Article and Find Full Text PDF