Publications by authors named "Kosei Sato"

Objective: To investigate the impact of body mass index (BMI) and exercise habits on readmission rates among older patients with heart failure.

Methods: Ninety-seven older patients admitted for heart failure (median age: 81 years; 57.7% male) were included in the study.

View Article and Find Full Text PDF

Behavioral sex differences primarily derive from the sexually dimorphic organization of neural circuits that direct the behavior. In , the sex-determination genes () and () play pivotal roles in producing the sexual dimorphism of neural circuits for behavior. Here we examine three neural groups expressing and/or , i.

View Article and Find Full Text PDF

The fruitless gene of Drosophila produces multiple protein isoforms, which are classified into two major classes, sex-specific Fru proteins (FruM) and non-sex specific proteins (FruCOM). Whereas FruM proteins are expressed in ∼2000 neurons to masculinize their structure and function, little is known about FruCOM's roles. As an attempt to obtain clues to the roles of FruCOM, we compared expression patterns of FruCOM and FruM in the central nervous system at the late larval stage.

View Article and Find Full Text PDF

While epigamic traits likely evolve via sexual selection, the mechanism whereby internal sexual dimorphism arises remains less well understood. Seeking clues as to how the internal sexual dimorphism evolved, we compared the abdominal musculature of 41 Drosophila montium group species, to determine whether any of these species carry a male-specific muscle of Lawrence (MOL). Our quantitative analysis revealed that the size of a sexually dimorphic MOL analog found in 19 montium group species varied widely from species to species, suggesting the gradual evolution of this sexually dimorphic neuromuscular trait.

View Article and Find Full Text PDF

The main theme of the review is how changes in pheromone biochemistry and the sensory circuits underlying pheromone detection contribute to mate choice and reproductive isolation. The review focuses primarily on gustatory and non-volatile signals in . Premating isolation is prevalent among closely related species.

View Article and Find Full Text PDF

This study aims at identifying transcriptional targets of FruitlessBM (FruBM), which represents the major isoform of male-specific FruM transcription factors that induce neural sexual dimorphisms. A promoter of the axon-guidance factor gene robo1 carries the 16-bp palindrome motif Pal1, to which FruM binds. Our genome-wide search for Pal1-homologous sequences yielded ~200 candidate genes.

View Article and Find Full Text PDF

Behavior is a readout of neural function. Therefore, any difference in behavior among different species is, in theory, an outcome of interspecies diversification in the structure and/or function of the nervous system. However, the neural diversity underlying the species-specificity in behavioral traits and its genetic basis have been poorly understood.

View Article and Find Full Text PDF

The () gene of generates two groups of protein products, the male-specific FruM proteins and non-sex-specific FruCOM proteins. The FruM proteins have a 101 amino acids (a.a.

View Article and Find Full Text PDF

The fruitless (fru) locus was originally defined by a male sterile mutation that promotes male-to-male courtship while suppressing male-to-female courtship in Drosophila melanogaster. The fru promoter-1 pre-RNA generates a set of BTB-zinc finger family FruM proteins expressed exclusively in the male neurons, leading to the formation of sexual dimorphisms in neurons via male-specific neuroblast proliferation, male-specific neural survival, male-specific neuritegenesis or male-specific arbor patterning. Such a wide spectrum of phenotypic effects seems to result from chromatin modifications, in which FruBM recruits Bonus, Histone deacetylase 1 (HDAC1) and/or Heterochromatin protein 1a (HP1a) to ~130 target sites.

View Article and Find Full Text PDF

Males of the Drosophila melanogaster mutant croaker (cro) generate a polycyclic pulse song dissimilar to the monocyclic songs typical of wild-type males during courtship. However, cro has not been molecularly mapped to any gene in the genome. We demonstrate that cro is a mutation in the gene encoding the Calmodulin-binding transcription factor (Camta) by genetic complementation tests with chromosomal deficiencies, molecular cloning of genomic fragments that flank the cro-mutagenic P-insertion, and phenotypic rescue of the cro mutant phenotype by Camta+-encoding cDNA as well as a BAC clone containing the gene for Camta.

View Article and Find Full Text PDF

Temperature-sensitive gels (TSGs) are generally used in the fields of medical, robotics, MEMS, and also in daily life. In this paper, we synthesized a novel TSG with good thermal durability and a lower melting temperature below 60 °C. We discussed the physical properties of he TSG and found it provided excellent thermal expansion.

View Article and Find Full Text PDF

In Drosophila, some neurons develop sex-specific neurites that contribute to dimorphic circuits for sex-specific behavior. As opposed to the idea that the sexual dichotomy in transcriptional profiles produced by a sex-specific factor underlies such sex differences, we discovered that the sex-specific cleavage confers the activity as a sexual-fate inducer on the pleiotropic transcription factor Longitudinals lacking (Lola). Surprisingly, Fruitless, another transcription factor with a master regulator role for courtship circuitry formation, directly binds to Lola to protect its cleavage in males.

View Article and Find Full Text PDF

Some mAL neurons in the male brain form the ipsilateral neurite (ILN[+]) in a manner dependent on FruBM, a male-specific transcription factor. FruBM represses transcription, allowing the ILN to form. We found that the proportion of ILN[+]-mALs in all observed single cell clones dropped from ∼90% to ∼30% by changing the heat-shock timing for clone induction from 4-5 days after egg laying (AEL) to 6-7 days AEL, suggesting that the ILN[+]-mALs are produced predominantly by young neuroblasts.

View Article and Find Full Text PDF

In fruit flies, the male-specific fruitless (fru) gene product FruBM plays a central role in establishing the neural circuitry for male courtship behavior by orchestrating the transcription of genes required for the male-type specification of individual neurons. We herein identify the core promoter recognition factor gene Trf2 as a dominant modifier of fru actions. Trf2 knockdown in the sexually dimorphic mAL neurons leads to the loss of a male-specific neurite and a reduction in male courtship vigor.

View Article and Find Full Text PDF

It remains an enigma how the nervous system of different animal species produces different behaviors. We studied the neural circuitry for mating behavior in , a species that displays unique courtship actions not shared by other members of the genera including the genetic model , in which the core courtship circuitry has been identified. We disrupted the () gene, a master regulator for the courtship circuitry formation in , resulting in complete loss of mating behavior.

View Article and Find Full Text PDF

Drosophila platonic (plt) males court females, but fail to copulate. Here we show that plt is an allele of scribbler (sbb), a BMP signalling component. sbb knockdown in larvae leads to the loss of approximately eight serotonergic neurons, which express the sex-determinant protein Doublesex (Dsx).

View Article and Find Full Text PDF

The Drosophila fruitless (fru) gene is regarded as a master regulator of the formation of male courtship circuitry, yet little is known about its molecular basis of action. We show that roundabout 1 (robo1) knockdown in females promotes formation of the male-specific neurite in sexually dimorphic mAL interneurons and that overexpression of the male-specific Fru(BM) diminishes the expression of Robo1 in the fly brain. Our electrophoretic mobility shift and reporter assays identify the 42-bp segment encompassing the palindrome sequence T T C G C T G C G C C G T G A A in the 5' UTR of robo1 exon1 as the Fru(BM)-responsive element.

View Article and Find Full Text PDF

In the pupal stage, the fly body undergoes extensive metamorphic remodeling, in which programmed cell death plays a critical role. We studied two of the constituent processes in this remodeling, salivary gland degeneration and breakdown of the eclosion muscle, which are triggered by an increase and a decrease in the circulating steroid hormone ecdysone at the start and end of metamorphosis, respectively. We found that knockdown of zeste (z), a gene encoding a sequence-specific DNA-binding protein implicated in transvection, in salivary gland cells advances the initiation of their degeneration, whereas z knockdown in neurons delays muscle breakdown.

View Article and Find Full Text PDF

The muscle of Lawrence (MOL) is a male-specific muscle present in the abdomen of some adult Drosophila species. Formation of the MOL depends on innervation by motoneurons that express fruitless, a neural male determinant. Drosophila melanogaster males carry a pair of MOLs in the 5th abdominal segment, whereas D.

View Article and Find Full Text PDF

Two transcription factor genes, fruitless (fru) and doublesex (dsx), are the primary factors that direct the development of brain sex differences in Drosophila. In the nervous system, the dsx gene produces different proteins, DsxM and DsxF, respectively, in males and females, whereas the fru gene produces proteins (FruM) only in males. Thus, the dsx-dependent sex differences in the nervous system likely reflect the distinct target specificity of DsxM and DsxF, whereas the fru-dependent sex differences rely on the presence and absence of FruM.

View Article and Find Full Text PDF

Recently mated Drosophila females were shown to be reluctant to copulate and to exhibit rejecting behavior when courted by a male. Males that experience mate refusal by a mated female subsequently attenuate their courtship effort toward not only mated females but also virgin females. This courtship suppression persists for more than a day, and thus represents long-term memory.

View Article and Find Full Text PDF

Neurogenetic analyses in the fruit fly Drosophila melanogaster revealed that gendered behaviors, including courtship, are underpinned by sexually dimorphic neural circuitries, whose development is directed in a sex-specific manner by transcription factor genes, fruitless (fru) and doublesex (dsx), two core members composing the sex-determination cascade. Via chromatin modification the Fru proteins translated specifically in the male nervous system lead the fru-expressing neurons to take on the male fate, as manifested by their male-specific survival or male-specific neurite formations. One such male-specific neuron group, P1, was shown to be activated when the male taps the female abdomen.

View Article and Find Full Text PDF

Sex differences in the nervous system are prevalent throughout the animal kingdom. In humans, the corpus callosum and anterior commissure are larger in females, whereas some hypothalamic nuclei and associated structures are larger in males. Numerous studies in rodents have demonstrated that when these nuclei are exposed to circulating androgens during the critical period around birth, they develop into male-typical structures.

View Article and Find Full Text PDF

In Drosophila melanogaster, the fruitless (fru) gene encoding BTB-Zn-finger transcription factors organizes male sexual behavior by controlling the development of sexually dimorphic neuronal circuitry. However, the molecular mechanism by which fru controls the sexual fate of neurons has been unknown. Our recent study represents a first step toward clarification of this mechanism.

View Article and Find Full Text PDF